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Abstract— Critical node detection (CND) is commonly used to
detect nodes with a high impact on network robustness. It has
been widely used in disease propagation, social networks, commu-
nications, and other fields. As a nondeterministic polynomial-time
(NP)-complete problem, the efficiency of solving CND severely
limits the scale of the available network. Fortunately, the evo-
lutionary algorithm (EA) is an effective method to solve this
problem. However, although EA improves the global search
capability of the algorithm by preserving gene diversity, it also
introduces many inferior genes, thus expanding the candidate
solution space, reducing the search efficiency, and making it
difficult to apply the pruning algorithm directly to its solution
space. Hence, indirectly reducing the solution space of EA by
deleting inferior genes is a feasible pruning method; however, the
interaction of multiple genes affects the quality of CND solutions,
making it a challenge to pick out inferior individual genes.
Therefore, this work proposes a multipopulation synergistic gene
screening algorithm based on the parallelism of EA and combined
with Ensemble learning for identifying low-quality genes and
removing them as a way of pruning the solution space of the
algorithm and improving the search efficiency. The algorithm
encodes all nodes in the graph as the gene pool of EA and treats a
single population as a weak learner to screen the dominant genes
in the gene pool and achieve fast pruning of EA’s solution space
by integrating the dominant individuals in multiple populations.
In this work, the experiments demonstrate the effectiveness of
the proposed method and analyze the effect of different network
structures on the algorithm.

Index Terms— Critical nodes detection (CND), ensemble learn-
ing, genetic algorithms (GAs), multipopulations.

I. INTRODUCTION

CRITICAL nodes detection is one of the most important
research topics in complex networks [1], [2], [3], [4].

As a combinatorial optimization problem, the main objective
is to find a set of nodes from the network whose deletion
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will lead to the most significant disruption of network con-
nectivity. For example, in biological networks [5], locating the
critical nodes can be used to guide the treatment of various
diseases [6]. In propagation networks such as disease [7] and
information spreading [8], [9], controlling critical nodes can
effectively reduce the rate and scope of diffusion. In communi-
cation networks [10], [11], losses due to accidents or deliberate
attacks can be reduced by adding protection measures to
critical nodes.

Meanwhile, CND, as a nondeterministic polynomial-time
(NP)-complete problem, has a very high computational com-
plexity [12], especially in large-scale networks with multiple
critical nodes. Two strategies are often used to solve such
problems, i.e., strategies based on greedy and EA. Algorithms
using greedy strategies [2], [13], [14], [15], [16], [17] can find
acceptable approximate optimal solutions. Due to its powerful
global search capability, EA [18], [19], [20], [21], [22], [23],
[24] perform even better on this problem, i.e., using the natural
selection mechanism of superiority and inferiority to explore
and mine superior individuals in the solution space. However,
the efficiency of most approaches is still limited by the size
of the target network and the number of critical nodes.

Pruning algorithms [25], [26], [27], [28], [29], [30] are
helpful methods in search algorithms to avoid unnecessary
traversal processes and improve the time and space efficiency
of the algorithm. Algorithms optimized by pruning and other
optimization strategies are more efficient in execution than
the general unpruned algorithms. However, preprocessing the
algorithm solution space by pruning methods has yet to be
studied when using evolutionary computation to solve CND
problems. The problem’s difficulty lies in the large number
of individuals constituting the solution space, which makes it
challenging to remove inferior individuals within an acceptable
time. Since the quality of CND solutions is influenced by
the interaction of individual genes in the EA, pruning can
be achieved by screening genes. Fig. 1 shows a compara-
tive example of the pruned solution space of evolutionary
algorithm (EA) with and without simple pruning by removing
low degree nodes when searching for two critical nodes in
the dolphin network. The horizontal and vertical coordinates
represent the nodes sorted by node degree from smallest to
largest. The color bar indicates the network connectivity, and
the darker the color, the worse the network connectivity after
removing the group of nodes. As shown in Fig. 1, it can be
seen that after deleting nodes with low degree values, the
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Fig. 1. Simple illustration of solution space pruning. (a) Solution space
before pruning. (b) Solution space after pruning.

significantly reduced candidate solution space can improve
the efficiency of searching for the optimal solution. However,
CND is a combinatorial optimization problem where multiple
nodes interact to get the final result, which means simple
and brutal deletion may also ignore the potential high-quality
solutions. Therefore, it is necessary to develop a method that
can identify the merits of gene nodes and prune them quickly
and efficiently to reduce the candidate space and consequently
improve the efficiency of the EA for CND.

To address this issue, a pruning strategy was designed by
combining ensemble learning [31], [32], [33], [34] and EA.
This strategy significantly reduces the number of individuals
who include inferior genes in the enormous solution space
by eliminating inferior genes from the limited gene pool of
EA, thus improving the algorithm search efficiency. Ensemble
Learning combines multiple learning algorithms to obtain a
more robust generalization performance than a single learner.
Furthermore, genetic algorithm (GA) [35], [36], [37], [38],
[39] was chosen to implement this algorithm due to its
robustness and simplicity, and its parallelism capability is
well suited for implementing ensemble learning. The proposed
pruning algorithm encodes network nodes as a gene pool
of GA, which is then optimized using multiple populations.
The algorithm rapidly prunes the gene pool through a small
number of iterations, thereby improving the efficiency of
the subsequent GA-based CND algorithm. The experiment
results on real and artificial network datasets demonstrate the
method’s effectiveness. The main contributions of this article
are as follows.

1) In this work, the solution space pruning problem for the
GA-based CND algorithm is reduced to the selection of
genes. A multipopulation synergistic pruning algorithm
is proposed to solve the problem in combination with
Ensemble learning by exploiting the potential paral-
lelism of GA. The algorithm simultaneously considers
the interactions between multiple genes. It retains the
dominant genes as much as possible while eliminating
the inferior genes, rapidly decreasing this problem’s
solution space. The efficiency of GA-based CND is
improved.

2) The effectiveness of the optimization performance of the
proposed method is verified by comparative experiments
on multiple artificial networks and natural networks.
Furthermore, the effectiveness of the proposed method
under different network structures is also analyzed.

The rest of this article is organized as follows. Section II
reviews related work on critical nodes detection and pruning

strategies; Section III presents the solution space pruning
strategy proposed in this article; Section IV shows the related
experiments and results are concluded in Section V.

II. RELATED WORK

A. CND Algorithm

CND is an optimization problem for finding a set of nodes
that highly impact the network’s connectivity. One of the
most popular and practical approaches to solving this problem
is to use greedy algorithms, which iteratively make locally
optimal choices to approximate the optimal global solution.
For the CND problem, greedy strategies based on network
metrics such as degree [40], k-shell [14] and centrality [41]
can approximate the critical nodes but are accompanied by
significant losses. Therefore, many researchers have combined
network structure information in their work and proposed new
network metrics to solve the CND problem using greedy
algorithms. For example, Chen et al. [15] proposed a new
metric to evaluate network fragmentation, formulated a new
nonconvex mixed integer quadratic programming model and
used a greedy algorithm to solve that optimization problem.
Khomami et al. [16] proposed the community finding influen-
tial node (CFIN) algorithm for detecting influential nodes in
the network combining the community structure and used a
greedy algorithm to optimize the objective function in local
search.

In some cases, even if the chosen metric is appropriate,
the greedy algorithm suffers from a loss of accuracy. Because
the CND problem is a combinatorial optimization problem, the
greedy algorithm does not consider the coupling information
between the individual solutions in the solving process. EAs
are considered standard algorithms for solving combinatorial
optimization problems due to their global search capability,
and several evolutionary-based algorithms have been proposed
for solving CND. For example, Yu et al. [24] proposed a
differential evolution framework incorporating network topol-
ogy information in dealing with the complex network CND
problem. The method combines topology information into
the genotype design of the differential evolution algorithm
to improve the algorithm search efficiency. Xu and Guo [20]
proposed a membrane EA (MEA-CNDP) to solve the CND
problem for biological targets. Qiu et al. [21] proposed a
LIDDE algorithm based on the differential EA (DEA) for
solving the influence maximization problem. Zhou et al. [42]
proposed a variable population modal algorithm with better
performance on the CND problem. Wu et al. [22] proposed
a genetic importance based EA (GIEA) to identify a set of
critical nodes in a cyber-physical anion power system (CPPS)
by maximizing the total load loss received by the end-user.
In addition, the multiobjective EA (MOEA) [43], [44], [45],
[46] is of high practical value when dealing with combinatorial
optimization problems. It can satisfy multiple objective func-
tions while finding a set of solutions. For example, Eliézer and
Gaskó [19] used MOEA for CND and proposed three different
initialization strategies to improve the performance of MOEA.
In addition, swarm intelligence algorithms [47] and machine
learning-based methods [48] have also been used to solve the
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CND problem. These methods are effective for solving CND
problems. However, none of these approaches considers using
pruning strategies to improve the algorithm’s efficiency.

B. Pruning Strategy

The pruning strategy can improve search algorithms’ effi-
ciency by avoiding unnecessary traversal processes. For
example, when faced with the verification problem of design-
ing digital systems, Chen et al. [49] proposed a state pruning
method, using multiple heuristics to make the depth-first-
search (DFS) select the most efficient path for searching. Merz
and Sanders [50] proposed a data structure named PReaCH
for the reachability query problem in directed graphs, which
improves improve the existing search pruning technique by
collecting more information from a single DFS traversal.
PReaCH-indices significantly outperform previous data struc-
tures in query speed with comparable preprocessing costs.
In solving the satellite transmission scheduling problem, which
is also an NP-complete problem, Zhao et al. [26] developed an
optimization model for satellite data transmission scheduling.
They proposed three pruning strategies to improve the local
search algorithm. Qin et al. [27] proposed a semantic hash
based on graph neural networks (GHashing) for implement-
ing approximate pruning to improve the query speed of
graph databases when dealing with the graph edit distance
problem on large-scale graph databases. Mahesh and Sush-
nigdha [28] proposed a new meta-heuristic-based optimization
technique called the search space reduction (SSR) optimiza-
tion algorithm. Unlike existing optimization algorithms, this
algorithm attempts to solve the problem of getting trapped
in a local optimal by randomly generating search agents in
each iteration instead of following the best search agent.
Moreover, the search space decreases with iterations to ensure
the exploration capability of the algorithm.

Algorithms, such as EAs and swarm intelligence opti-
mization algorithms, are effective methods for solving
NP-Complete problems. However, the computational effi-
ciency still needs to be improved, and reducing the solution
space of candidate solutions is one of the effective ways to
improve computational efficiency. Silva et al. [29] proposed
a method based on the mesh analysis technique to reduce
the solution space of the distribution system reconfiguration
problem, followed by the use of metaheuristic particle swarm
optimization (PSO) to solve this problem. Kadu et al. [51]
proposed a method based on a critical path to reduce the
solution space of the GA in solving the problem of efficiently
searching for the best solution for the water distribution
network. Li et al. [52] proposed a dynamic bit-masking strat-
egy that progressively reduces the search space during the
evolution process when using PSO algorithms for feature
selection (FS), significantly reducing computational time.

In addition, pruning strategies are often used to reduce the
model structure and parameters in machine learning models,
thus reducing the training cost of the model and the possibility
of model overfitting. For example, Li et al. [30] defined chan-
nel pruning on neural networks as the problem of searching
for the optimal channel configuration and compared the per-
formance of different currently available pruning methods with

random pruning methods. Kwon et al. [53] implemented a
sparse quantized neural network weight representation scheme
using fine-grained unstructured pruning that allows for the
compression and representation of various deep learning mod-
els; Roy et al. [54] proposed a method to dynamically prune
and train the model at the same time substantially reducing
the computational effort in the network training process;
Zhang et al. [55] encoded filter sets as genotypes and auto-
matically performed filter selection in the search space by
MOEAs. As can be seen above, the pruning strategy signifi-
cantly reduces the computational complexity of the algorithm
and improves its efficiency.

III. METHOD

In this work, a multipopulation synergistic gene screening
strategy incorporating Ensemble Learning is proposed by
exploiting the potential parallelism of GA. In this strategy,
each population is considered as a weak learner that indepen-
dently samples the gene pool and votes on the genes by their
frequency of occurrence on the dominant individuals of the
population. Finally, the gene pool is censored by integrating
the voting results of multiple populations. Low-voting genes
are removed, while high-voting genes are retained. After a
small number of iterations, the solution space of GA will be
significantly censored, thus improving the efficiency of optimal
search solutions. The proposed method is described in detail
in this section.

A. Problem Definition

The CND problem is to find a set of nodes that have the
most significant impact on network connectivity. Therefore,
this work uses pairwise connectivity PC(G) to measure the
connectivity of the remaining network after a group of nodes
is removed, which reflects the importance of this group of
nodes. The lower the pairwise connectivity of the remaining
network after the group of nodes is removed, the more critical
the group of nodes.

Thus, the CND problem and the solution space pruning
problem can be defined as follows: given an integer k, and an
undirected unweighted network G(V ), V is the set of nodes
in the network, and also the gene pool of the GA. The pruning
strategy aims to quickly obtain a set of a smaller number of
nodes V− ∈ V such that CND can find a set of nodes V̂ ∈ V−

and satisfy the following equation:

arg max Fitness(G, V̂ ) = e−PC(Ĝ)

s.t. Ĝ = G − V̂

|V̂ | ≤ k

PC(Ĝ) =
∑
Ci∈Ĝ

δi (δi − 1)

2
(1)

where k is the number of critical nodes and Ĝ is the remain-
ing network after removing V̂ from the original network.
Fitness(G, V̂ ) is the fitness value of the set of nodes V̂ .
In both the pruning module and the CND module in this
article, Fitness(G, V̂ ) is used to evaluate the importance of
a set of nodes V̂ . PC(Ĝ) is the pairwise connectivity of the
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network Ĝ; Ci is the connectivity slice in the network Ĝ,
and δi is the size of the connectivity component Ci , i.e.,
the number of nodes in this component. From the above
equation, PC(Ĝ) is related to the number of connected tiles
and the size of connected tiles, and the smaller the value,
the lower the degree of connectivity of the network. In addi-
tion, maximizing the fitness function yields a set of critical
nodes V̂ critical

= {nodecritical
1 , nodecritical

2 , . . . , nodecritical
k }. Fur-

thermore, V− is obtained by the multipopulation synergistic
gene screening module.

B. Multipopulation Synergistic Gene Screening Module

GA is commonly used to solve combinatorial optimization
problems, and its primary model was first proposed by Hol-
land [56]. GA mainly uses natural selection mechanisms to
solve optimization problems. In this work, a set of nodes is
considered as an individual, with each node representing a
gene on the individual. Offspring are then generated based on
the designed genetic operators, such as crossover and mutation.
Individuals with better fitness have a better chance of surviving
and reproducing, thus allowing the population to evolve.

Our module also combines ensemble learning. A single
population is considered a weak learner for learning the impor-
tance of nodes in the network. Furthermore, the importance
of nodes in the network is voted by integrating the learning
results of multiple populations. Then this is used to guide
the censoring of the gene pool. The censored gene pool
constituting the set of nodes V− is then passed into the post
gene screened CND module for finding a set of critical nodes.
The flow of this module is shown in Fig. 2. It consists of
four parts: multipopulation initialization, genetic operations,
population-dominant individual selection, and integration of
multiindividuals gene screening. First, multipopulation ini-
tialization constructs multiple independent sets of individuals
by gene sampling; after the genetic operation, the overall
quality of the population is improved, and then the population
dominant individual selection will obtain the highest quality
individuals from each population. Integrated multiindividual
gene screening will be based on the dominant individuals
selected from multiple populations to form a dominant gene
set, and based on the number of times the genes in the gene
pool appear in this dominant gene set, the quality of genes
is voted as a guide to eliminating the inferior solutions in
the solution space. The pruning of the solution space of this
problem can be achieved after several iterations of the above
steps. These four components are described in detail below.

1) Multipopulation Initialization: Each population con-
struction in multipopulation initialization relies on the
current gene pool. In contrast, the initial gene pool
needs to be constructed based on the set of nodes of
the original network G(V ), when the algorithm is first
executed. The initial gene pool can be expressed as
follows:

genePool0 = V = {v|vi ∈ V, i = 1, 2, 3, . . . , |V |}.

(2)

Each individual in the populations is a collection of
critical nodes selected from the current gene pool and

represents a candidate solution to the CND problem.
An individual in the population can be represented

indsm
yx = {v

m
x |v

m
xi ∈ genePoolm i = 1, 2, . . . , k} (3)

where indsm
yx is used to denote the x th individual in the

yth population, vm
xi denotes the i th gene in the individual,

genePoolm is the current gene pool at the mth iteration,
and k is the preset number of critical nodes. Multiple
population initialization is the process of generating
multiple populations, where each population consists of
multiple individuals. The generation strategy used in this
article is random, and the yth population of mth iteration
can be expressed as follows:

populationm
y =

{
indsm

y1, indsm
y2, . . . , indsm

ypopsi ze

}
(4)

where indsm
y1 is the first individual in populationm

y , and
pop_size is the predetermined number of individuals in
a single population. The multiple populations generated
based on the current mth generation gene pool, i.e., the
set of multiple above populations can be expressed by

Popsm
=

{
populationm

1 , populationm
2 , . . . ,

populationm
pop_num

}
(5)

where pop_num is a predetermined population size.
2) Genetic Operations: Elite retention, selection, crossover,

and mutation operations are performed on the current
multipopulation to generate a better set of populations
for the subsequent selection of dominant individuals.
Details of crossover, mutation, and other operations are
in Section III-C.

3) Population-Dominant Individual Selection: The purpose
of population dominance individual selection is to screen
for dominant individuals, i.e., individuals with high
fitness values, among multiple populations. The genes in
this group of dominant individuals constitute the dom-
inant genome, which is used for subsequent screening
of the inferior genes. The optimal individual indsm

ybest
in a single population populationm

y within Popsm can be
obtained by the following equation:

indsm
ybest = arg max

indsm
yx

Fitness(G, indsm
yx )

s.t. indsm
yx ∈ populationm

y (6)

where Fitness(G, indsm
yx ) is the fitness of the x th

individual indsm
yx in the population populationm

y , and
when the fitness of an individual in the population is
maximized, that individual is the optimal individual
in the population. populationm

y ∈ Popsm is the yth
population in multiple populations at the mth itera-
tion of the algorithm. With the above equation, the
pop_num optimal individual combinations inds_bestm =
{indsm

ybest , y = 1, 2, . . . , pop_num} from pop_num pop-
ulations can be obtained and used to integrate the
gene screening of multiple individuals. In the above
process, populationm

y can be obtained by two strategies.
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Fig. 2. Algorithmic process of multipopulation synergistic solution space pruning.

In the popInitial strategy, the initial population can be
directly used without genetic manipulation, which is
obtained by sampling the gene pool. In popEvolutiuon,
population is updated by iterative genetic manipulation
of the initial population, which has a higher quality of
the population and dominant individuals and is ben-
eficial to improve the quality of gene screening, but
it will cause an increase in time consumption of the
process.

4) Integration of Multiindividuals Genetic Screening: After
obtaining multiple dominant individuals inds_bestm ,
they will be used to screen for genes in the current gene
pool. Gene screening is a process of retaining dominant
genes and eliminating inferior genes. In this article,
the node genes in the current gene pool are ranked by
their frequency of occurrence in the dominant individual
population, and the top Num(genePoolm) genes are
selected to construct the mth genePool

p(vm
i ) =

∑
indi∈inds_bestm

I F(vm
i ∈ indi) (7)

where p(vm
i ) denotes the frequency of occurrence of vm

i
in inds_best for the genes in the gene pool updated m
times, I F(vm

i ∈ indi) denotes whether vm
i appears in

indi, and 1 if it appears, 0 if it does not. The nodes with
the highest frequencies are retained, and the nodes with
lower frequencies are removed from the current gene
pool to build a new gene pool. The following equation
obtains the number of genes in the gene pool after m

updates:

Num(genePoolm) = (1−m · α) · Num(genePool0)
(8)

where Num(genePoolm) is the number of genes in the
gene pool after the mth update and α is the deletion
factor in the gene screening process, which determines
the ratio of the number of genes deleted from the gene
pool at each iteration of the popEvolution and popInitial
algorithms to the number of genes in the initial gene
pool.

Repeated execution of the above four steps can gradually
reduce the number of genes in the gene pool until the number
of genes satisfies the preset demand. The final censored
gene pool constitutes the censored node set V−. Due to the
dominant individual selection mechanism and gene voting
mechanism, the genes appearing on the dominant individual
have a higher probability of being retained, so the number
of candidate solutions in the solution space composed of V−

is reduced. However, the dominant solution is retained as
much as possible through selection. Furthermore, the average
quality of candidate solutions is improved, which benefits the
subsequent optimization algorithm for an efficient solution of
the target problem. The pseudo-code of the multipopulation
synergistic gene screening algorithm using the popEvolution
strategy is shown in Algorithm 1.

C. Postgene Screened CND Module

Based on the set of nodes V− obtained after the multipopu-
lation synergistic gene screening, this article uses GA to solve
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Algorithm 1 Multipopulation Synergistic Gene Screening
Algorithm
Input: The number of Populations: pop_num, Population
size: pop_si ze, Network: G(V ), The number of criti-
cal nodes: k, The number of evolution of subpopulations:
subpop_g, Deletion factor: α, The retention rate of genes:
retention_rate.
Output: node set after deletion: V−.

1: m = 0.
2: genePool0

← {v|vi ∈ V, i = 1, 2, 3, . . . , |V |}.
3: while Num(genePoolm) > retention_rate ·

Num(genePool0) do
4: Popsm

← Ø.
5: for y = 0; y < pop_num; y ++ do
6: Populationm

y ← Ø.
7: for x = 0; x < pop_si ze; x ++ do
8: indsm

yx ←
{
vm

x |v
m
xi ∈ genePoolm, i = 1, 2, . . . , k

}
.

9: Populationi .append(indmsyx ).
10: end for
11: Popsm .append(Populationm

y ).
12: end for
13: Popsm ′

← Genetic_Operations(Popsm, subpop_g).

14: inds_bestm ← Ø.
15: for y = 0; y < pop_num; y ++ do
16: indsm

ybest ← Individuals with the highest fitness in
Popsm ′

[y].
17: inds_bestm .append(indsm

ybest ).
18: end for
19: Counting the frequency of occurrence of genes in

genePoolm in inds_bestm as the number of votes for
that gene.

20: genePoolm+1
← (1−m · α) · Num(genePool0) gene

with the highest number of votes in genePoolm .
21: m = m + 1.
22: end while
23: V−← genePoolm .
24: return V−.

the CND problem. Fig. 3 illustrates the overall flow of the
algorithm. The genotype design and fitness function of the
algorithm are the same as the one in Sections III-A and III-B.
And the population initialization, selection, crossover, muta-
tion, and elite retention operators are described below.

1) Initialization: The initialization of the population is
based on the node set V−. A fixed number of genes are
randomly selected to make up the individuals in the first
generation, and no duplication of genes is allowed in the
individuals. The resulting population can be denoted as
Population0. After obtaining the initial population, the
fitness set of the individuals can be calculated in the
population and denoted as Fitness0.

2) Elite Retention: In the elite retention process, the
elite_num individuals with the highest fitness are directly
obtained from the current population to form the elite set
elite_inds. This set can be directly inherited to the next
generation without crossover and mutation operations.

Algorithm 2 GAs With Elite Retention
Input: Population size: pop_si ze, Network: G(V ), Number
of elites: eli te_num, Crossover rate: pc, Mutation rate: pm,
Number of iterations: g, Censored node set V−.
Output: Collection of critical nodes: V̂ cri tical .

1: i = 0.
2: Population0 ← I ni tiali zation(genePool).
3: while i < g do
4: Fitnessi ← Get_Fittest (Populationi ).
5: eli te_indsi ← Eli te_retention(eli te_num).
6: select_indsi ← Selection(Populationi , pop_si ze −

eli te_num).
7: crossover_indsi ← Crossover(select_indsi ).
8: mutate_indsi ← Mutation(crossover_indsi ).
9: Populationi+1 = eli te_indsi + mutate_indsi .

10: i = i + 1.
11: end while
12: Fitnessg ← Get_Fittest (Populationg).
13: top_pop ← The individual with the highest fitness in

Populationg .
14: V̂ cri tical

← Get the collection of critical nodes from
top_pop.

3) Selection: In the selection process, (pop_num −
elite_num) individuals are selected from the current
population using the roulette operator and noted as
selected_inds for subsequent crossover and mutation
operations.

4) Crossover: In the crossover process, two individu-
als are selected from selected_inds in turn, and the
point crossover operation is performed according to
the crossover rate pc. After all the individuals in
selected_inds have completed the crossover operation,
the resulting set of individuals can be recorded as
crossover_inds. In the crossover process, it is also nec-
essary to avoid gene duplication.

5) Mutation: In the mutation process, the mutation opera-
tion is performed for each individual in the crossover
individual set crossover_inds based on the mutation
rate pm. Each node gene in the individual can be
randomly mutated to any node in the reduced gene pool,
and mutate_inds can be obtained after completing the
mutation operation for each individual. As before, gene
duplication should be avoided in the mutation process.

After executing the above genetic operation, the result-
ing elite_inds and mutate_inds are combined to obtain the
next generation. When the average fitness of the individuals
converges completely or the number of iterations reaches a
specified number, the optimal individual in the population will
be considered as the solution of the algorithm. The pseudocode
of this algorithm is shown in Algorithm 2.

IV. EXPERIMENT

A. Datasets

In order to verify the effectiveness of the proposed method
in this work, experiments were conducted on several synthetic
networks and real networks. First, the datasets used in the
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Fig. 3. GA-based CND algorithm.

TABLE I
DESCRIPTION ON EXPERIMENTAL DATASETS

experiments are described. For the synthetic dataset, this work
uses the classical synthetic networks Erdős–Rényi (ER) [57]
stochastic network, Watts-Strogatz (WS) [58] (small world
network), Barabási-Albert (BA) [59] (scale-free network), and
the ForestFire (FF) [60] (forest fire synthetic network), which
is commonly used in CND problems. Specifically, every two
nodes in the ER random network are connected to each other
with equal probability; WS small-world networks have short
shortest paths between two nodes; the nodes in BA scale-free
networks have high heterogeneity and critical nodes have high
degree. For the real networks in this work, HumanDisea-
some [61] (the disease network dataset), Powergrid [62] (the
power network dataset), Circuit [63] (the circuit network),
and A01 [64] (the citation network) are chosen. The relevant
information on the above networks is shown in Table I.

In this work, numerical experiments on the above dataset
are compared with several pruning strategies to illustrate the
impact of pruning methods on the search efficiency of the
algorithm and the performance of the algorithm, and to verify
the effectiveness of the proposed method.

B. Baseline

The following is a brief description of the baseline method.

1) Pruning-Free Strategy(No_Cutoff): Without solution
space pruning, directly search for the critical nodes by
GA.

2) Random Pruning Strategy(Random): A random pruning
strategy was used, whereby some nodes in the original
network were randomly removed from the gene pool.
Then the critical nodes are calculated by GA.

3) Greedy Pruning Strategy (Greedy): The greedy
strategy-based pruning method was used to remove the
nodes with the lowest degree value from the original
network. The nodes with low degree value are removed
from the gene pool, and then the critical nodes are
calculated by GA.

4) TDE-Degree: The degree-based differential evolution
algorithm proposed by Yu et al. [24] improves the
search efficiency of the differential evolution-based CND
algorithm by incorporating the degree value information
in the network into the genotype of the differential
evolution algorithm.

5) Pruning Strategies Based on Multiprimitive Populations
(popInitial): The solution space pruning method based
on the synergistic gene screening strategy for multipop-
ulations proposed in this article, where the selection of
dominant population individuals is implemented on each
initial population. Then the critical nodes are calculated
by GA.

6) Pruning Strategies Based on Multioptimal Populations
(popEvolution): The solution space pruning method
based on the synergistic gene screening strategy for
multipopulations proposed in this article. The selection
of dominant population individuals is achieved on an
optimized population after genetic operations. Then the
critical nodes are calculated by GA.

C. Parameters

To ensure the comparability of the experiments, the same
parameters are used for the various pruning strategies. The
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TABLE II
DESCRIPTION ON EXPERIMENTAL PARAMETERS

parameter settings of several pruning algorithms, GA-based
CND algorithm, and TDE-degree are shown in Table II.

D. Algorithm Performance Analysis

This section compares the GA-based CND algorithm after
various pruning strategies and TDE-degree to verify the effect
of pruning strategies on algorithm efficiency. The time cost
required for pruning is ignored when comparing performance
because it requires much less computation time compared
with the critical node detection process which requires a
large number of iterations. The results obtained are shown in
Table III. It is worth noting that due to the stochastic nature
of the EA, there is bias in the algorithm’s calculated results
each time. So, the data in Table III were averaged through five
experiments to mitigate the bias caused by this randomness.

The data in Table III show that the proposed multipopulation
synergistic gene-screening-based pruning strategies popInitial
and popEvolution outperform the original method no_cutoff,
other pruning methods and TDE-degree for the same number
of population iterations. popEvolution outperforms popInitial
in more cases, which indicates that optimizing the quality
of optimal individuals in the population during the pruning
process has a positive effect on the subsequent integration
of multiple individuals for gene screening and the critical
node detection process. The TDE-degree algorithm deals with
the CND problem by incorporating the network node degree

information in the genotype, but this operation also limits
the algorithm’s performance. In this article on TDE, the
authors used the network robustness index R [24] as the
objective function, and the calculation of this function strongly
correlates with the degree value of the nodes in the network.
Hence, the execution of the TDE-degree in this article is
more efficient. Still, when the objective function is replaced
with the pairwise connectedness PC(Ĝ), which has a weak
correlation with the degree value, the algorithm tends to fall
into the local optimum. Under the pruning method based on
the random strategy, the algorithm’s performance degrades
significantly. This is because some high-quality genes are
extremely easy to be eliminated under the random pruning
strategy, resulting in the overall low quality of the candi-
date solutions in the solution space after pruning, and even
the quality of the optimal candidate solutions after pruning
being significantly worse than that of the optimal candidate
solutions in the original solution space. The same reason
can be used to explain the poor performance of the pruning
method based on the greedy strategy on datasets with low
heterogeneity, such as WS500 and ER500. Fig. 4 shows
the pairwise connectivity of the optimal individuals in the
population for each iteration. The numerical results in Table III
and the convergence curve in Fig. 4 are obtained by taking
the mean of the five times experimental results due to the
randomness of the EA. Since the performance of TDE-degree
and the pruning algorithm based on the random strategy is
generally inferior to that of the no_cutoff method, it is not
shown in the figure. It can be seen that after popInitial and
popEvolution pruning, the algorithm can reduce the pairwise
connectivity of the network significantly at the beginning of
the iterations compared with the no_cutoff method. The greedy
pruning method has the same performance in several networks.
However, it is generally inferior to the two population-based
pruning algorithms proposed in this article. At the same
time, the greedy pruning strategy has a similar convergence
curve with popInitial and popEvolution on the BA500 and
FF500 datasets with high heterogeneity. Compared to the
GA-based CND algorithm, the time required for popInitial
and popEvolution is insignificant. In addition, compared to
other methods, popInitial and popEvolution have a smaller
probability of falling into a local optimum because multiple
populations increase the adequacy of gene pool sampling,
allowing a higher probability of the dominant gene being
retained when the inferior gene is eliminated. Therefore,
the proposed pruning method has performance improvements
compared with the GA-based CND algorithm.

E. Correlation Analysis of Algorithm Effect and Network
Structure

The results in Table III show that the proposed algorithm
performs better in different networks compared to the
no_cutoff method. Moreover, in general, it can be known
that it shows better performance on BA scale-free networks
than on FF, WS, and ER networks. Since the nodes in BA
scale-free networks are more heterogeneous, and the degree
distribution is closer to the power-law distribution, this work
considers that this method and the greedy strategy-based

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on November 02,2023 at 01:36:25 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: GA-BASED MULTIPOPULATION SYNERGISTIC GENE SCREENING STRATEGY 9

TABLE III
RESULT OF EXPERIMENTS ON ALGORITHM PERFORMANCE

Fig. 4. Convergence plots of the network pairwise connectivity corresponding to the optimal individual in each iteration when executing the GA-based
CND algorithm after pruning the GA solution space on eight networks. (a) ER500. (b) FF500. (c) WS500. (d) BA500. (e) HumanDiseasome. (f) Powergrid.
(g) Circuit. (h) A01.

TABLE IV
RESULT OF EXPERIMENTS ON THE INFLUENCE OF

NETWORK HETEROGENEITY

method perform better on more heterogeneous networks. For
this reason, the proposed hypothesis is tested experimentally
in this subsection. In order to construct networks with different
heterogeneity, this work uses the Price model [65], [66] to con-
struct networks with different heterogeneity for experiments.
The Price model construction method is shown in Algorithm 3.

Among the parameters of the above algorithm, p is the pri-
ority connection probability, which is used to confirm whether
to perform a priority connection when accessing a new node,
i.e., whether to give a higher connection probability to the
node with a higher degree value. A larger priority connection
probability p indicates that nodes with larger degree values
will connect to newer access nodes and the network will
have a higher degree of heterogeneity. In generating networks
with heterogeneous differences based on the above algorithm,

Fig. 5. Result of correlation experiments between algorithm effect and
network heterogeneity.

we assign values 0.1, 0.3, 0.5, 0.7, and 0.9 to the parameter
p, respectively, while ensuring that the other parameters are
consistent. Specifically, the target network size N , the initial
network size m0, and the connectivity factor m are set to
500, 8, and 3, respectively. Experiments are conducted in
the constructed network dataset, and the results are shown in
Table IV and Fig. 5.

As shown in Table IV, after implementing the pruning
methods greedy and popEvolution in the network dataset
constructed based on the Price model, the performance of the
CND algorithm is improved in both cases compared with that
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Algorithm 3 Network Construction Algorithm Based on Price
Model
Input: Target network size: N , priority connection probability:
p, initial network size: m0, connection coefficient: m
Output: Synthesis Network

1: Generate an initial strongly connected network with node
number m0

2: Store the nodes pointed to by each edge in the initial
network in the array Array

3: for i in range(m0, N ) do
4: m_node← Ø
5: for j in range(0, m) do
6: randomly generated r ∈ [0, 1).
7: if r > p then
8: choose a node at random and put it into m_node.
9: else if r < p then

10: choose a random node from array and put it into
m_node.

11: end if
12: end for
13: Add a node to the network that is connected to the node

in m_node.
14: Put the concatenated edges of the added nodes into

Array.
15: end for
16: Output synthetic dataset.

without pruning. In addition, the degree of algorithm perfor-
mance improvement increases with the growth of parameter
p, i.e., the heterogeneity of the network.

V. CONCLUSION

In this work, to solve the problem of large solution space
and the existence of numerous inferior solutions when using
GA to solve CND problems, a multipopulation synergistic
gene screening algorithm based on integrated learning is pro-
posed. The algorithm indirectly prunes the GA solution space
by screening and removing inferior genes from the gene pool
to reduce the number of individuals containing inferior genes
significantly. The algorithm can consider the coupling infor-
mation among multiple genes and measure the quality of genes
by their frequency of occurrence on the dominant individuals
in multiple populations. The parallel execution of multiple
populations allows the gene pool to be adequately sampled,
increasing the probability of dominant genes being retained
while inferior genes are censored. The proposed algorithm
reduces the size of the solution space of the GA-based CND
algorithm, increases the probability of the dominant solution
being selected, and improves the search efficiency of the
algorithm. The experiments on several artificial and real net-
works compare the performance of GA-based CND algorithms
with and without pruning strategies. Experimental results show
that the proposed algorithm can improve the efficiency of the
GA-Based CND algorithm on several networks and performs
better on heterogeneous networks.

As more and more attention is focused on the CND problem
for complex networks, much work remains to be investigated.

The solution space pruning strategy proposed in this article
can improve the probability of dominant solutions not being
rejected to a certain extent through multipopulation synergis-
tic genetic screening. However, the genetic screening-based
strategy will unavoidably reject some dominant solutions in
a specific class of network datasets. Therefore, based on
pruning at the gene level, it is still promising further to
investigate pruning methods at the candidate solution level to
ensure the probability of the dominant solution being retained
through a more refined solution space pruning strategy, thus
better maintaining the performance of the algorithm based on
achieving efficient search.
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