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Abstract— Critical nodes detection (CND) focuses on identify-
ing the nodes that significantly impact the network’s robustness
and is applied in various fields such as power grids, commu-
nication networks, and disease spreading. However, detecting
the critical nodes is a challenging nondeterministic polynomial
time complete (NP-complete) problem. One possible solution is
using the evolutionary algorithm which has a high global search
capability. However, the existing evolutionary algorithms for
CND only focus on independent nodes, ignoring the underlying
relationship among the nodes. Thus, in this work, we proposed a
new topology-combined differential evolution framework called
TDE to explore the possibility of improving the performance by
fusing topology information, which designs individual genotypes
through node degree, and new mutation and decoding-based
selection operators are designed for these genotypes to use
topology information effectively. The experiments on synthetic
and real networks show that it is feasible to improve the search
capability of the algorithm by fusing node degree information.

Index Terms— Complex network, critical nodes detection
(CND), differential evolution (DE), evolutionary computation.

I. INTRODUCTION

THE critical nodes detection (CND) in network science
aims to identify a set of nodes; removing these nodes

will maximize or minimize a predefined graph connectivity
metric [19], as Fig. 1 shows. The important role of CND in
network theory has continuously attracted wide attention from
various fields such as social [5], infrastructure [6] and trans-
mission networks [36] and is it well-studied [12], [14], [21].
For instance, in infrastructure networks such as power grids
and road networks, targeted prevention and protection of crit-
ical nodes will effectively reduce losses caused by malicious
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Fig. 1. Simple illustration of critical nodes. Removal of critical nodes will
cause largest impact on the connectivity of the original network. (a) Original
network. (b) Residual network after removing the critical nodes.

attacks or unexpected failures. In contrast, in transmission
networks for viruses or forest fires, timely blocking of critical
nodes facilitates propagation control and it can be used in
the biomedical field to control the spread of diseases and the
development of anticancer drugs.

There are lots of approaches for the CND problem, which
can be simply summarized into two categories, i.e., exact
and approximate approaches. The exact approaches focus on
the theoretical optimal solution in the whole solution space.
For example, Shen and Smith [29] proposed an optimal
polynomial-time dynamic programming algorithm for several
types of CND on tree structures and series–parallel networks.
Summa et al. [9] proposed an integer linear programming
model with a nonpolynomial number of constraints to solve
CND in polynomial time. Veremyev et al. [35] developed
more compact linear 0–1 formulations for the considered types
of CND with O(n2) entities. Rezaei et al. [27] proposed the
exact iterative algorithm for CNDP (EIA-CNDP) algorithm
to improve the mixed integer linear programming model for
solving the CND problem more efficiently. However, existing
studies show that the CND problem is a nondeterministic
polynomial time complete (NP-complete) problem [19], [20].
Although new approaches [35] have constantly been intended
to alleviate this problem, they are still computationally expen-
sive when dealing with large networks. Therefore, high com-
putational complexity caused by the large solution space of
CND limits the application of exact approaches.

The approximate approaches balance the tradeoff between
the computational cost and performance, making it pos-
sible to solve CND in a larger solution space. The
greedy-strategy-based algorithms are efficient and acceptable
approaches to the approximate solution. For CND, the greedy
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strategy is based on the traditional network indicators such
as degree [1], k-shell [40], and centrality [17], which can
approximate critical nodes but are accompanied by a large loss.
Except for the traditional indicators, some new indicators and
strategies have been developed. For instance, Ventresca and
Aleman [33] proposed a depth-first search solution with the
greedy strategy for quickly identifying critical nodes in large
networks. Khomami et al. [18] proposed the community find-
ing influential node (CFIN) algorithm for detecting influential
nodes in the network combining the community structure and
using a greedy algorithm to optimize the objective function
in local search. Pullan [25] proposed a multistart greedy
algorithm for better performance in several types of CND.
Chen et al. [7] designed a novel metric and a nonconvex
mixed-integer quadratic programming model, and on this
basis, the greedy strategy is used to solve CND in undirected
weighted networks. These approaches achieve acceptable solu-
tions within a feasible time. However, losses caused by the
greedy-based algorithms are still depressing when the solution
space becomes larger and more complex.

Randomness is an important element for global searching in
the approximate algorithms, such as the simulated annealing
optimization algorithm, the swarm intelligence optimization
Algorithm [23], [31], the multiobjective evolutionary algo-
rithm [24], the population-based incremental learning algo-
rithm [32], the randomized rounding algorithm [34], and
the random walk algorithm [11], [15]. The evolutionary
algorithm is an effective way to tackle such complex dis-
crete problems [41], and many evolution-based algorithms
have been proposed for CND. For instance, Qiu et al. [26]
proposed the local-influence-descending differential evolution
(LIDDE) algorithm for solving the influence maximization
problem based on the differential evolutionary algorithm.
Aringhieri et al. [2] proposed a flexible evolutionary frame-
work for solving several variants of CND by adopting the
standard genetic algorithm (GA). Zhou et al. [44] combined
the evolutionary algorithms with local search operators and
proposed an effective memetic algorithm for solving CND.
Furthermore, Zhou et al. [43] proposed a variable population
memetic algorithm with better performance on this problem.
Meanwhile, the metaheuristic algorithms, such as variable
neighborhood search proposed by Hansen et al. [16] and iter-
ated local search proposed by Lourenço et al. [22], combine
the random element with the local search algorithms to achieve
better performance.

However, these algorithms treat the nodes as the indepen-
dent elements, ignoring the topology relationship between the
nodes, e.g., propinquity in the distance and the similarity in
structure. These underlying correlations may help improve
the performance of the evolutionary algorithms. For instance,
when a critical node is identified, another node with similar
topological characteristics is likely to become another critical
node.

In this work, we proposed the topology-combined dif-
ferential evolution (TDE) framework for CND, which can
improve CND performance using network topology informa-
tion. The proposed method consists of two parts, i.e., the
topology-combined genotype design module for fusing topol-

ogy information and the information-combined differential
evolution (DE) module for identifying critical nodes. Since
node degree is a simple but essential topological feature in
a network, nodes with a high degree usually have a more
significant impact on the robustness of the network [4].
In addition, the similarity between node degrees can be
mapped into similarity on node topological information, so we
extract the degrees as genotypes in the topological combination
genotype design module. Furthermore, the DE algorithm is
simple in principle, with few parameters and high robust-
ness. Compared with the traditional evolutionary algorithms
(e.g., GA), DE converges faster when individuals are rep-
resented as real-valued vectors due to its adaptive nature
in the variation process [8]. After using normalized degree
values instead of node symbols, the resulting individuals are
encoded to be represented exactly in the form of real-valued
vectors and contain network topology information. For these
reasons, DE is used in this article to construct the DE module.
The experiments on degree-based TDE show it is feasible
to improve the search capability of the algorithm by fusing
network topology information. This work may provide a new
path for improving the performance of algorithms on complex
networks [13], [39], [42]. The main contributions of the article
as described as follows.

1) We propose the TDE framework, in which nodes’ degree
is used for genotype designing. Moreover, we also
design the mutation and decoding-based selection oper-
ators to make TDE efficient and feasible. To our knowl-
edge, this is the first attempt to improve the performance
of the evolutionary algorithm by designing the genotype
with network topology information.

2) Experiments on both the synthetic and real datasets
verify the effectiveness of improving the algorithm’s
efficiency by fusing topology information.

The rest of this article is summarized as follows.
In Section II, we define the CND used in the arti-
cle. In Section III, we introduce the proposed TDE framework.
In Section IV, we verify the influence of network topology
information fusion on algorithm efficiency through experi-
ments. Finally, we give a summary in Section V.

II. DEFINITION

CND identifies nodes that have a significant impact on net-
work connectivity, and therefore, connectivity metrics such as
maximizing the number of connected components, minimizing
pairwise connectivity, and minimizing the largest component
size are frequently used in CND. However, these connectivity
metrics cannot reflect the dynamical robustness of the network
when it suffers continuous malicious attacks. Thus, we adopt
the network robustness metric R [28] based on continuous
attacks as the predefined connectivity metric R, which can be
defined as

R = 1

n

N�
q=1

S(q) (1)

where n is the number of nodes in the network, and S(q)
is the fraction of nodes in the largest connected subgraph
after removing q nodes. In calculating S(q), the q nodes are
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selected individually, that is, choosing the node with the high-
est degree in the remaining network each time. Furthermore,
CND is defined as follows.

Definition: Given an integer k and a undirected unweighted
network G(V ), where V denotes the set of nodes in G. The
CND aims to find a set of nodes V − ⊆ V within the network
satisfying the following equation:

max Fitness
�
V −� = R(G(V )) − R

�
Ĝ

�
V − V −��

s.t. |V −| <= k (2)

where k is the number of critical nodes, and Fitness(V −)
is the fitness value of nodes’ set V −. The result of max-
imizing Fitness can be expressed as V −critical = {nodecritical

1 ,
nodecritical

2 , . . . , nodecritical
k }.

III. METHOD

In this section, the details of the TDE framework are intro-
duced first, which includes the topology-combined genotype
design module and the DE module as shown in Fig. 2. Further-
more, the degree-based TDE is realized and the visualization
solution space of CND is also given to explain and analyze
the effectiveness of the proposed method.

A. Topology-Combined Genotype Design

Individuals in the evolutionary algorithm are usually set as
the candidate solutions of the target problem, and in CND,
the search target is a set of nodes. However, using the nodes’
collection as an individual’s gene directly cannot use the
topology information of the network during the process of
evolution search. Therefore, this method incorporates topolog-
ical information and uses it to improve search efficiency. The
individuals are set into two forms, phenotype, and genotype.
As shown in Fig. 3, the phenotype as indi_phenoi is set to
the collection of nodes, and the genotype as indi_genoi is set
to the collection of node representation containing topology
information. The mapping-based encoding and similarity-
based decoding are also designed to transform between the
phenotype and the genotype, and both of them depend on the
node representation dictionary NR obtained from the process
of node representation construction as shown in Fig. 3. The
following will introduce the node representation construction,
the mapping-based encoding, and the similarity-based decod-
ing in detail.

1) Node Representation Construction: Node representation
construction aims to transform the node into the topology-
combined representation, which can be expressed as the node
representation dictionary NR = {nodei : repi}, where i =
1, 2, 3, . . . , |V |, nodei is the i th node in G, repi is the
topology-combined representation of nodei , and nodei : repi is
one of the key–value pairs in collection NR. The node repre-
sentation construction strategy can be different when the topol-
ogy information to be fused is different. In this article, node
degree is adopted to construct the node representation dictio-
nary NR = {node1 : degree1, node2 : degree2, . . . , noden :
degreen}, where degreei is the normalized degree of nodei .

2) Mapping-Based Encoding: Mapping-based encoding
aims to not only transform the individuals’ phenotype into
the genotype but also make the genotype contain network
topology information. The phenotype of an individual is a
set of nodes, and it can also be regarded as a set of keys
in the node representation dictionary NR. Considering that
the values in NR contain topology information, the key-
to-value mapping strategy is used to achieve encoding, which
is shown in Fig. 3. After key-to-value mapping, the genotype
of the individual satisfies both crossover-mutation executable
and topology containment. The meaning of encoding will be
explained in the follow-up content.

3) Similarity-Based Decoding: Fitness calculation for selec-
tion is based on the individual phenotype, and thus, it is
necessary to transform the genotype into the phenotype by
decoding. However, after crossover and mutation, the node
representations are changed and cannot be transformed into
phenotype by reverse value-to-key mapping. Therefore, this
article designs similarity-based decoding to select nodes most
similar to the genotype denoted as Decoding(). Take the
genotype of one individual indi_genom for example, the
main process of decoding can be expressed by the following
equation:

indi_phenom[ j ]

= Decoding
�
indi_genom[ j ]

�
= arg min

nodei ∈V
Distance

�
indi_genom[ j ], NR[nodei ]

�
(3)

where indi_phenom is the phenotype of indi_genom after
decoding, indi_phenom[ j ] is the j th node in indi_phenom ,
and indi_genom[ j ] is the j th gene in indi_genom , where j =
1, 2, . . . , k is the gene locus as shown in Fig. 3. NR[nodei ]
is the node representation of nodei , where i = 1, 2, . . . , |V |
is used to traverse every element in NR. Distance() is the
function to measure the distance between indi_genom[ j ] and
NR[nodei ], and the more similar the two are, the smaller
the function value is. When there are multiple nodes whose
node representation have the same distance as indi_genom[ j ]
and are the minimum value, one of these nodes will be
selected randomly as the decoded result. By the formula above,
the nodes that have the closest node representation to the
gene in indi_genom can be obtained one by one, and after
k operations, the phenotype of indi_genom can be obtained
as indi_phenom . In the degree-based method, the normalized
node degree is a real value between 0 and 1, and thus, we adopt
the Euclidean distance to measure the similarity in the
similarity-based decoding. And Distance() in (3) can be stated
as follows:
Distance

�
indi_genom[ j ], NR[nodei ]

�
= ��indi_genom[ j ] − NR[nodei ]

��. (4)

B. DE Module

The DE module realizes the global optimization of the
target problem by the iterative update of the individuals in the
population, and it is the core component for CND in this work.
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Fig. 2. Framework of TDE, which consists of the topology-combined genotype design module and DE module.

Fig. 3. Process of mutual conversion between phenotype and genotype by the
node representation dictionary. (a) Encoding and decoding between phenotype
and genotype. (b) Node representation dictionary NR.

The overall process of the DE module is shown in Algorithm 1.
In Algorithm 1, indi_genog

i represents the i th individual’s
genotype in the population of the gth generation. xmutate is
the temporary individual in genotype after mutation. xcrossover

is the temporary individual in genotype after crossover, and
it also represents the new individual generated by indi_genog

i .
Details of initialization, crossover, mutation, and selection are
introduced as follows.

1) Initialization: Initialization aims to generate initial indi-
viduals as initial candidate solutions. CND aims to find the set
of nodes that have the largest influence on the connectivity
of the original network. Thus, initialization in TDE is to
generate a set of initial individuals, which can be stated as
Init_population = {indi_pheno1, indi_ph
eno2, . . . , indi_phenopop_size}, where pop_size is the presett
population size, and indi_phenoi is the i th individual of pheno-
type in Init_population, which can be stated as indi_phenoi =
{indi_phenoi [1], indi_phenoi [2], . . . , indi_phenoi [k]}, where k
is the preset number of critical nodes, and indi_phenoi [ j ] is
the j th nodes in indi_phenoi .

2) Mutation: Mutation is the operator used for global
search in the evolutionary algorithms. In TDE, each
individual in the population mutates according to the

Algorithm 1 TDE
Input: The network G(V ), node representations’ dictionary
NR, max generation max_g, population size pop_si ze
Output: Critical nodes cri tical_nodes
1: Ini t_ population = Initialization(G)
2: Population0 = Encoding(Ini t_population)
3: for g = 0; g < max_g; g + + do
4: for i = 0; i < pop_si ze; i + + do
5: f i tness = Fitness(Decoding(indi_genog

i ))
6: xmutate=Mutate(indi_genog

i )
7: xcrossover =Crossover(xmutate)
8: new_ f i tness=Fitness(Decoding(xcrossover))
9: if new_ f i tness > f i tness then

10: indi_genog+1
i = xcrossover

11: else
12: indi_genog+1

i = indi_genog
i

13: end if
14: end for
15: end for
16: cri tical_nodes=Decoding(Max_fitness

(Populationmax_g))
17: Return cri tical_nodes

following equation:
xmutate = indi_genoi + F · �xsuperior − xinferior

�
(5)

where indi_genoi denotes the i th individual in the population,
and xmutate is the temporary individual in genotype after
mutate. According to Storn and Price [30], F ∈ [0, 2] is a
natural and constant factor, which controls the amplification
of the differential variation (xsuperior − xinferior). xsuperior and
xinferior are the superior individual and inferior individual in
population selected by roulette, respectively. The probability of
individual being selected as xsuperior can be obtained according
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to the following equation:
Psuperior

�
indi_genoi

�

= Fitness
�
Decoding

�
indi_genoi

��
�n

j=1 Fitness
�
Decoding

�
indi_geno j

�� . (6)

In the equation, Psuperior(indi_genoi) is the probability
indi_genoi is selected as xsuperior. Decoding(indi_genoi ) is
the similarity-based decoding operation described above
for obtaining the representation indi_phenoi of indi_genoi ,
i.e., (3), which is used to find the node with the most similar
genotype to indi_genoi . Fitness(Decoding(indi_genoi )) is the
fitness of indi_genoi , where i = 1, 2, . . . , |V |, which can be
used to calculate the selected probability of each individual
in population. It is obvious that individual with larger fitness
has a higher probability to be selected as xsuperior in this way.
Similarly, the probability of individual being selected as xinferior

can be obtained according to the following equation:
Pinferior

�
indi_genoi

�

= 1 − Fitness
�
Decoding

�
indi_genoi

��
�n

j=1 1 − Fitness
�
Decoding

�
indi_geno j

�� . (7)

In addition, we define the function Roulete_
superior(Population) to select one individual in Population as
xsuperior based on the probability obtained by (6). Furthermore,
Roulete_inferior(Population) can be defined in a similar way.
Algorithm 2 shows the process of mutation.

Algorithm 2 Mutation in TDE

Input: The individual for mutation Populationg
i , the gth

generation population Populationg

Output: Mutated individual xmutate

1: xsuperior = Roulete_superior(Populationg)
2: xin f erior = Roulete_inferior(Populationg)
3: xmutate = Populationg

i + F · (xsuperior − xin f erior )
4: Return xmutate

3) Crossover: Crossover is the operator used for local
search in evolutionary algorithms. The multipoint crossover
is adopted in TDE. It selects two individuals randomly and
decides whether to execute a gene exchange operation based
on the crossover rate. Algorithm 3 shows the process of
crossover.

Algorithm 3 Crossover in TDE
Input: xmutate, Populationg, crossover rate pc, number of
nodes k
Output: xcrossover

1: xr = Roulete_superior(Populationg)
2: xcrossover = xmutate

3: for i = 0; i < k; i + + do
4: if random(0, 1) > pc then
5: xcrossover [i ] = xr [i ]
6: end if
7: end for
8: Return xcrossover

Fig. 4. Solution space of selecting two critical nodes in networks. The
abscissa and ordinate, respectively, represent a candidate critical node, and
the color depth represents the fitness of the candidate solution. (a) With
no topology information combining. (b) With degree topology information
combining.

4) Selection: The selection operation is the decision-making
process of individual retention in the population. The selection
operator used in this article is consistent with the original
DE algorithm [30], and each individual in the population
should compete with the individual obtained after mutation
and crossover, and the one with higher fitness will be retained.
This operation is based on the following equation:

indi_genog+1
i =

⎧⎪⎨
⎪⎩

indi_genog
i , Fitness

�
indi_genog

i

�
> Fitness(xcrossover)

xcrossover, else.

(8)

C. Visual Interpretation on Degree-Based TDE

Fig. 4 shows the solution space of selecting two critical
nodes in the network with 100 nodes, where both the abscissa
and the ordinate represent the candidate critical node name and
the color depth represents the fitness value of the candidate
solution. It can be seen that when the node order in the
abscissa and ordinate uses meaningless serial numbers directly,
the figure of solution space appears chaotic. However, when
using degree centrality instead of serial numbers, the figure
of solution space becomes orderly, as shown in Fig. 4(b).
In this case, nodes with similar degree values will have similar
representations, which means they are close to each other on
both the axes. From another perspective, it can be regarded as
degree-based ordering for the solution space, which leads to
the search process in such a solution space being easier.

Specifically, the sorted solution space satisfies the following
features.

1) The trend of diagonal increasing. The solution space
shows an increasing diagonal trend, that is, the average
quality of the solutions in the lower right region is
better than that in the upper left region. It is because
combinations of nodes with larger degree values usually
have a larger impact on network connectivity.

2) Block distribution. There are multiple block regions in
the solution space where the qualities of the solutions are
relatively similar. It is because the degrees of nodes in
this area are relatively close, and the impacts on network
connectivity are similar.

Among the above two features, the former is a kind of
orderliness, which is beneficial to evolutionary search. While
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Fig. 5. Differential variable between the superior and inferior individuals can
provide guidance information to improve the search efficiency of evolution
search.

the latter is a kind of disorderliness, and blocks with large area
will reduce the regularity of the solution space.

In this situation, due to the property of diagonal increasing
in solution space, the superior individuals would have a higher
probability of appearing in the high fitness area (lower, right),
and the inferior individuals would appear in the low fitness
area (upper, left). Thus, by involving differential variables
obtained from the difference between the superior and inferior
individuals, the DE algorithm would have a higher probability
of searching for the optimal solution through the area in
which nodes have a larger degree (see Fig. 5). The above
process can be viewed as a preference-based search method.
Compared with the search process in the original solution
space, the proposed preference-based search method has a
better convergence rate. That Is because the former includes
completely random mutation and has a greater chance of
repeatedly searching through the same solutions due to the
chaotic solution distribution. On the other hand, the block
distribution in the solution space is caused by nodes with the
same or similar degree values, which cannot be effectively
ordered in the block region. Thus, if the difference among
nodes’ degree is small, the block area will be large, and
the solution space is less ordered, so the improvement on
convergence efficiency can be limited.

Based on the analysis above, it can be concluded that the
more orderly the solution space is after combining degree
information, the more obvious the increasing diagonal trend
becomes and the smaller block area appears, which leads
to a greater improvement in algorithm efficiency. It will be
explained in Section IV.

IV. EXPERIMENT

In this section, we apply our proposed method on four syn-
thetic datasets and four real datasets to verify the effectiveness
of the algorithm.

A. Experiments on Synthetic Datasets

To evaluate the effectiveness of our proposed method,
we generate four networks, i.e., regular graph (RG) network,

Erdös–Rényi (ER) network, Watts–Strogatz (WS) network,
and Barabási–Albert (BA) network. For a fair comparison,
all the networks have the same number of nodes and edges
approximately. The details of these datasets are described as
follows.

1) RG: The RG used in this article is the incomplete regular
network, in which each node has the same degree value.
The number of nodes in RG is 300, and the number of
edges is 1200.

2) ER Network [10]: Nodes are connected according to a
certain probability in ER random networks. The number
of nodes in ER is 300, AND the number of edges
is 1196.

3) WS Network [38]: Compared with the random network
with the same size nodes, the WS network has a shorter
average path length and larger clustering coefficient. The
number of nodes in WS is 300, and the number of edges
is 1200.

4) BA Network [3]: In BA networks, the degree distribution
of nodes satisfies the power-law distribution and has high
heterogeneity. The number of nodes in BA is 300, and
the number of edges is 1184.

The baselines used in the experiments are described as
follows.

1) Random: Select k nodes randomly as critical nodes.
2) Greedy-Degree: Select k nodes with maximum degree

as critical nodes.
3) Greedy-R: Select k nodes that have the greatest impact

on the network robustness metric R after deletion,
i.e., the node with the greatest Fitness(), as the crucial
nodes.

4) TDE-Random: The TDE framework proposed in the
article searches for k critical nodes, but a random encod-
ing is used to design individual genotypes. No network
topology information is fused in the encoding process,
so TDE-random can be regarded as a method to handle
nodes entirely discretely.

5) TDE-Degree: Adopt the TDE framework proposed in the
article to search k critical nodes, and individual genotype
was designed with node degree information. In this way,
the correlation among nodes is fused in the evolutionary
search process.

The parameters in TDE-random and TDE-degree are set to
the same to ensure comparability. Table I shows the numerical
results of four methods on CND. Fig. 6 shows the convergence
curves of TDE-random and TDE-degree for comparing the
convergence efficiency of the evolution-based methods. The
curves in the figure represent the fitness value of the best
individual with the iteration of the population. The faster
the curve rises, the higher the convergence efficiency. The
numerical results and the convergence curve are obtained by
taking the mean of the ten times experimental results due to
the randomness of the evolutionary algorithm.

As shown in Table I, the evolution-based approach performs
better than greedy-degree, greedy-R, and random; greedy-
R does not perform as well as greedy-degree on the four
networks. The main reason is that greedy-R tends to select
a single node that significantly impacts network connectivity,
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TABLE I

FITNESS OF ALGORITHMS ON CND. R0 IS THE ORIGINAL VALUE OF
ROBUSTNESS INDEX R , AND k IS THE NUMBER OF CRITICAL NODES

Fig. 6. Convergence curve of the evolution-based methods on CND with the
increase in generation on synthetic networks.

such as the hub between connected block nodes, and such
nodes do not have a high degree in the network. From the
k-core decomposition theory in [37], it can be seen that
the set of core nodes that have a significant impact on the
network is connected to about 70% or more of the core
nodes, i.e., such nodes usually have a relatively large degree,
and removing a single such node does not have a significant
impact on the network connectivity. Therefore, greedy-R is
usually worse than greedy-degree. On RG and ER networks
with more uniform degree distributions, the random strategy
has a higher probability of selecting nodes at the network’s
core than greedy-R due to the property that greedy-R prefers
hub nodes. Thus, its performance is slightly more robust than
that of greedy-R. While the performance of TDE-random and
TDE-degree is similar, TDE-degree shows a slight advantage.
However, Fig. 6, which shows the convergence efficiency

Fig. 7. Degree distribution of four synthetic networks. (a) RG. (b) ER.
(c) WS. (d) BA.

of the methods, demonstrates different trends of the two
evolution-based methods in different types of networks: TDE-
degree shows no advantage in the RG network, a slight advan-
tage in the WS and ES networks, and an obvious advantage in
the BA network. We analyze the above experimental results
from the perspective of degree value, and Fig. 7 shows the
degree distribution of the four networks.

In the RG network, two evolutionary algorithms have sim-
ilar performance. That is because nodes in the RG network
process the same degree value [see Fig. 7(a)], leading to
the nodes’ representations combining degree-based topology
information being consistent, introducing no more additional
discriminative information. As a result, TDE-degree has a
similar performance with TDE-random in the RG network.
Similar phenomena can also be found in the ER and WS
networks for their degree value is limited in the vicinity of the
average degree in distribution [see Fig. 7(b) and (c)]. Contrar-
ily, TDE-degree algorithm performance achieves significant
improvement in the BA network. That is because the nodes in
the BA network follow power-law distribution [see Fig. 7(d)],
and the high heterogeneity in degree values could introduce
discriminative information effectively into the algorithm.

From another perspective, evolution search with topology
information fusing can be regarded as search with preference
as mentioned in Section III, and nodes with larger degree
values will be searched with higher probability in TDE-
degree. Such preference-based search method for high-degree
nodes can get better performance in heterogeneity network,
e.g., BA network, but have poor improvement on homogeneity
network, e.g., WS- and ER-like networks, and even may
reduce the search capability for low attention on nodes with
low degree relatively.

B. Analysis on Solution Space

To verify the obtained experimental results further, we ana-
lyze it from the perspective of solution space. Fig. 8 shows the
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Fig. 8. Visual solution space before and after fusing degree information on four synthetic networks. (a) Unsorted_RG. (b) Unsorted_ER. (c) Unsorted_WS.
(d) Unsorted_BA. (e) Sorted_RG. (f) Sorted_ER. (g) Sorted_WS. (h) Sorted_BA.

solution space of CND on four networks, that is, the solution
space of select two nodes as critical nodes from the ER,
RG, ES, and BA networks, respectively. To reduce the size
of solution space and make the visualization of results more
straightforward, we reconstruct four networks with 100 nodes.
Identically, the abscissa and ordinate represent a candidate
critical node, respectively, where the color depth represents
the fitness value of the candidate solution.

Fig. 8(a)–(d) shows the unsorted solution space of CND,
and it can be seen that the solution space without topology
information combining is chaotic and irregular. While in
Fig. 8(e)–(h), the solution spaces after degree-based topology
information being involved show different features in four
types of networks. In the RG network, the sorted solution
space with degree information is not ordered, and it is as
chaotic as the original one. That is because all the nodes
in this network have the same degree value which leads to
no trend of diagonal increasing, and block distribution is
represented in the whole solution space. The efficiency of the
algorithm is not improved in this situation. While in the ER
and WS networks, due to the more various degree values,
the orderliness of sorted solution space appears, as well as
the trend of diagonal increasing. As for block distribution,
the blocks increase in number and reduce in area. As a result,
the efficiency of the algorithm gets a limited improvement.
In the BA network, the significant variance of node degree
values makes the sorted solution space much more orderly,
and the trend of diagonal increasing is more obvious than
that in the ER and WS networks. In this situation, the search
efficiency of the algorithm gets a greater improvement as
shown in Fig. 6.

From the experimental results and the visualized solution
space above, it can be seen that the improvement in algorithm
efficiency is related positively to the orderliness of sorted
solution space with degree information. It is consistent with
the reasoning in Section III.

Fig. 9. Degree distribution of four real networks. (a) USAir97. (b) Ecoli.
(c) A01. (d) Circuit.

C. Experiments on Real Datasets

To further verify the effectiveness of our proposed method,
we analyze the effectiveness of the algorithm on real networks
with different node degree distributions. Fig. 9 shows the
degree distribution of four real networks, where USAir97 is
a traffic network with 332 nodes and 2126 edges, Ecoli is
a biological network with 328 nodes and 456 edges, A01
is a citation network with 259 nodes and 640 edges, and
Circuit is a circuit network with 252 nodes and 399 edges.
The convergence curve of the algorithm before and after
fusing node degree information is shown in Fig. 10. It can
be seen from the result that in the heterogeneous networks
(i.e., USAir97, Ecoli, and A01), TDE-degree performances are
better than TDE-random. In addition, the number of iterations
required for TDE-degree convergence is much smaller than
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Fig. 10. Convergence curve of the evolution-based methods on CND with
the increase in generation on real networks. (a) USAir97. (b) Ecoli. (c) A01.
(d) Circuit.

that of TDE-random. Due to the random encoding property of
TDE-random, the number of iterations needed for convergence
is similar to that of the traditional DE. Compared with the
number of iterations, the time required for the decoding
operation in the TDE method is insignificant. Therefore, TDE-
degree has performance improvement compared with the tradi-
tional DE. However, in homogeneous networks (i.e., Circuit),
fusing degree information cannot improve the search capability
of the evolution algorithm. These results are consistent with
the former analysis.

V. CONCLUSION

In this work, we proposed a TDE framework for CND called
TDE, which consists of two parts, i.e., the topology-combined
genotype design module for fusing topology information and
the DE module for identifying critical nodes. The topology
combined with the genotype design module achieves topo-
logical information fusion by mapping-based encoding and
similarity-based decoding. In addition, in the DE module,
compared with higher order topological information such as
node embedding, this article adopts the node degree that is
more applicable to the CND problem to design individual
genotypes, and the suitable variation operator and selec-
tion operator are designed to use the topological network
information effectively. The proposed approach improves the
performance of the evolutionary algorithm by designing the
genotype with network topology information. Experiments on
the synthetic and real datasets show it is feasible to improve
the search efficiency of the algorithm by fusing network
topology information. Our study highlights the importance
of the underlying network topology information and provides
insights into the design of the elements of algorithms to further
improve the performance on CND.
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