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Abstract—The proliferation of fake news and its serious negative4
social influence push fake news detection methods to become nec-5
essary tools for web managers. Meanwhile, the multi-media nature6
of social media makes multi-modal fake news detection popular7
for its ability to capture more modal features than uni-modal8
detection methods. However, current literature on multi-modal9
detection is more likely to pursue the detection accuracy but ignore10
the robustness (the detection ability in the case of abnormality11
and malicious attack) of the detector. To address this problem,12
we propose a comprehensive robustness evaluation of multi-modal13
fake news detectors. In this work, we simulate the attack methods of14
malicious users and developers, i.e., posting fake news and injecting15
backdoors. Specifically, we evaluate multi-modal detectors with five16
adversarial and two backdoor attack methods. Experiment results17
imply that: (1) The detection performance of the state-of-the-art18
detectors degrades significantly under adversarial attacks, e.g.,19
BDANN’s detection accuracy on malicious news drops by 47%20
compared to normal, even worse than general detectors (Att-RNN);21
(2) Most multimodal detectors are more vulnerable to visual modal-22
ity than textual modality; (3) Backdoor attacks on popular events23
news severely degrade detectors (accuracy dropped by an average24
of 20%); (4) These detectors degrade more (another 2% reduction25
in accuracy) when subjected to multi-modal attacks; (5) Defense26
methods will improve the robustness of multi-modal detectors, but27
cannot fully resist the effects of malicious attacks.28

Index Terms—Adversarial attack, backdoor attack, bias29
evaluation, fake news detection, multi-modal, robustness30
evaluation.31

I. INTRODUCTION32

THE popularity of social media has deeply affected the way33

people consume information. However, the accompany-34

ing risks, e.g., spreading fake news, are more easily continue35

increasing [1]. The deep entanglement online and offline makes36

fake news as dangerous as a fast-inflating bubble. For example,37
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during the 2016 U.S. presidential election, fake news related to 38

the two candidates was shared more than 37 million times on 39

Facebook [2]. Moreover, during the outbreak of COVID-19, lots 40

of fake news about this pandemic on social media have harmed 41

people’s health-protective behaviors [3]. 42

In the aspect of context style, social media attracts users not 43

only with traditional text but also images and short videos, which 44

provides a better reading experience and credibility. Unfortu- 45

nately, malicious users can still abuse this multi-media infor- 46

mation [4]. Unlike text-only information, malicious users on 47

social media can manipulate information in more imperceptible 48

ways, such as fake photos, unrelated images, caricatures, etc. 49

Moreover, fake news with multi-modal information usually has 50

a faster spreading speed and negative effect [5]. Consequently, 51

text-based detection methods are challenged by multi-modal 52

information, leading to unsatisfying detection accuracy [6]. 53

Under such a circumstance, fake news detection on social me- 54

dia (mostly multi-modal information) has recently become an 55

emerging research topic [7], [8], [9], [10], [11], [12], [13]. On the 56

one hand, researchers have conducted fake news detection meth- 57

ods based on multi-media content [14], [15], [16] which have 58

achieved better performance. On the other hand, assisted the 59

manual fact-checking methods, fact-checking websites emerged 60

to help people distinguish fake news, such as Snopes, FactCheck, 61

PolitiFact, and Full Fact. However, to achieve high accuracy, 62

these systems usually have a high cost of manual effort, e.g., 63

manual annotation or fact-checking [17]. 64

The rapid development of multi-modal detector methods ex- 65

hibits the dynamic game process between website managers and 66

malicious users (developers). To achieve specific political or 67

economic benefits, malicious users or developers will do their 68

best to deceive the detectors. In addition to traditional writing 69

style transfer and image forgery, some attack methods against 70

deep models may also be exploited by malicious users to attack 71

multi-modal fake news detectors. For example, substituting sub- 72

tle synonyms or similar words can make the text misclassified 73

in natural language processing (NLP) tasks [21]. There are also 74

some malicious users that can affect the performance of the 75

detector through network attacks [22], [23]. According to the 76

stage that the attack is conducted, mainly two types of attacks 77

have been introduced, including adversarial attack, i.e., imper- 78

ceptible perturbation added to the data in the testing process, to 79

fool the model to output the wrong result, and backdoor attack, 80

i.e., specifically designed trigger added to some of the data in 81

the training process, to make the model output the targeted result 82

when fed by some triggered examples. It has been widely proved 83
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Fig. 1. The specialties between multi-modal and uni-modal attacks. (a) Detectors’ performance under multi-modal and uni-modal attacks. Using the Twitter [18]
as the dataset, the perturbation for both VIPER [19] and FGSM [20] is set to 0.1. Specifically, ‘clean’ denotes the detection performance when dealing with original
datasets before attacks, ‘text attack’ and ‘image attack’ represent the detection performance under adversarial attack on text and image alone, respectively, and
‘multi-modal attack’ is the attack on both two modals. (b) Multi-modal attacks make detectors identify errors. The original fake news in the upper left corner can
be detected normally. The upper right corner adds a patch on the fake news image, and the lower left corner replaces a word in the fake news text. Uni-modal attack
on the image cannot help the fake news bypass detector detection. The lower right corner is the fake news after a multi-modal attack that includes both, escaping
detection.

that the imperceptible perturbation in images can make the84

classifier fail in computer vision tasks [20]. Besides, malicious85

developers may introduce backdoor attacks in outsourced train-86

ing scenarios [24], [25]. This type of attack methods [24], [26]87

for deep learning are more concealed than traditional methods,88

and has a general attack capability against fake news detectors89

based on deep learning models, which seriously interferes with90

the normal detection of fake news detectors. It poses a threat91

to the information security of multimedia platforms. Therefore,92

the robustness of these deep neural models becomes important93

for it represents the ability to maintain the performance of the94

main task under both clean and attacked scenarios. The issue95

of adversarial attack on text-based fake news detectors [27] has96

been explored, but it does not consider robustness in multi-modal97

detectors and other scenarios.98

To better illustrate the robustness of the current domi-99

nant multi-modal fake news detectors (attention-based recur-100

rent neural network (Att-RNN) [28], event adversarial neural101

networks (EANN) [5], multi-modal variational auto-encoder102

(MVAE) [29], BERT-based domain adaptation neural network103

(BDANN) [30] and SpotFake [31]), we evaluate their detection104

accuracy before and after being attacked by three adversarial105

attacks, i.e., visual perturber (VIPER) [19], image-based ad-106

versarial attack named fast gradient sign method (FGSM) [20]107

and multi-modal attack use both attack methods. The fake108

news detection accuracy comparison results of these detectors109

before and after attacks are shown in Fig. 1(a). It can be easily110

observed that all five detectors are performing well for clean111

news, i.e., more than 70%. However, when under attacks, all of112

them sharply decreased near to 40%, which is solid evidence113

to prove that malicious attackers may attack both modalities114

simultaneously if they wish to keep their fake messages evading115

detection by these detectors. Fig. 1(b) is an example of fake news116

carefully crafted to bypass the detector of MVAE [29]. The fake117

news cannot deceive the detector only with a uni-modal attack,118

but it will be falsely detected when subjected to a multi-modal 119

attack. 120

Another robustness issue of the deep learning model has also 121

captured our attention, named biased deep learning. In this work, 122

bias in multi-modal detection refers to that the detector pays 123

more attention to one modality (e.g., image) than another (e.g., 124

text) [32]. The detector with a strong bias is more vulnerable, 125

which needs only half or even lower perturbation cost to be 126

attacked. The barrel effect means that the robustness of the 127

multi-modal detector depends on the robustness of the short 128

plate modality. 129

Consequently, it is necessary to comprehensively study the 130

robustness of multi-modal detectors before practical deployment 131

in the real world. In this work, we conduct a comprehensive 132

robustness evaluation of the multi-modal fake news detectors 133

to address these problems. Specifically, we evaluate fake news 134

detection models, focusing on four research questions (RQs). 135
� RQ1: How robust are the well-performing multi-modal 136

detectors under adversarial attacks (attacks by malicious 137

users)? 138
� RQ2: How do backdoor attacks (attacks by malicious de- 139

velopers) affect the robustness of multi-modal detectors? 140
� RQ3: Are the multi-modal detectors biased (which modal- 141

ity affects the detector more)? 142
� RQ4: Can the robustness of these multi-modal detectors be 143

improved (defend against malicious attacks and deal with 144

special scenarios)? 145

To answer these research questions, we select five multi- 146

modal fake news detection methods with dominant perfor- 147

mances, i.e., Att-RNN, EANN, MVAE, BDANN, and SpotFake. 148

First, we record their detection accuracy and try to explain 149

their behaviors under both clean and attack conditions through 150

several level interpretation tools, i.e., latent textual feature rep- 151

resentations [33] learned by these detectors. Furthermore, we 152

compare their detection performance changes before and after 153
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the adversarial attack (test phase) to answer RQ1. Second,154

we compare the detection performance of clean detectors and155

backdoored detectors to answer RQ2. Then, for RQ3, we attack156

textual, visual, and multi-modal features extractor, respectively,157

as well as the detector’s detection experiments in the case of158

image data style transfer. In the condition of visual and textual159

data mismatch. At last, for RQ4, based on the conclusion of RQ1160

and RQ2, we utilize two common methods of defense to testify161

the possibility of robustness improvement for these detectors.162

The main contributions of our work are summarized as fol-163

lows:164
� To the best of our knowledge, this is the first work to165

perform a comprehensive robustness evaluation on multi-166

modal fake news detectors (i.e., adversarial attack, back-167

door attack, and biased evaluation).168
� We analyze the robustness of multi-modal fake news de-169

tectors under various attacks to simulate malicious users170

and developers, and conclude novel insights from extensive171

experiments.172
� We propose defensive methods to improve the robustness173

of multi-modal fake news detectors, i.e., image resizing, ad-174

versarial training, and activation clustering-based defenses.175

The remaining part of this paper is organized as follows: Re-176

lated works are introduced in Section II, while preliminaries and177

critical methods are detailed in Section III and IV. Experiments178

and analysis are shown in Section V. In Section VI, we discuss179

robustness in special scenarios. Finally, we conclude our work180

and discuss limitations in Section VII.181

II. RELATED WORK182

This section briefly reviews the related works of multi-modal183

fake news detectors, adversarial attacks, backdoor attacks, and184

modality bias in deep learning.185

A. Multi-Modal Fake News Detectors186

Traditional fake news detection models mostly rely on texts,187

which utilize statistical and semantic features from the text con-188

tent [34], [35], or statistical analysis of communication-based on189

social networks [36]. They have limited detection capabilities for190

multimedia platform news. To extract more effective features,191

recent studies focus on multi-modal contents. For example, Jin192

et al. [37] used deep neural networks to fuse multi-modal content193

on social networks. They proposed that the Att-RNN method194

using the attention mechanism to fuse multi-modal contents.195

However, the detection performance of Att-RNN is limited by196

the ability of LSTM to extract text features. Wang et al. [5]197

built an end-to-end model for fake news detection and event198

discriminator, namely EANN. It can remove the features of199

specific events that couldn’t migrate, and retains the shared200

features between events to detect fake news. Inspired by the201

EANN model, Khattar et al. [29] built a similar architecture202

named MVAE. It utilizes a bi-modal variational autoencoder203

and binary classifier for fake news detection. Similarly, in-204

spired by the event classifier [5] and the domain adaptive [29],205

Zhang et al. [30] introduced a domain classifier to remove the206

dependency of specific events from the features extracted by207

the multi-modal features extractor and proposed the BDANN 208

framework. It uses the bidirectional encoder representations 209

for transformers (BERT) and visual geometry group (VGG19) 210

models to extract textual and visual features, respectively. The 211

SpotFake [31] framework also uses BERT and VGG19, which 212

was proposed to solve the problem that the results of fake news 213

detection rely heavily on subtasks, and didn’t consider any other 214

subtasks to detect fake news effectively. None of them consider 215

the relationship between text and images in multi-modal news, 216

and only splice the multi-modal features, which may be be 217

more vulnerable to uni-modal attacks. Vishwakarma et al. [38] 218

proposed a novel fake news authentication system for detection 219

of fake news on social media platforms. It verified the veracity 220

of image text by exploring it on web, and then checked the 221

credibility of the news. Recently, Meel et al. [39] proposed a 222

multi-modal fake news detection framework, which unitedly 223

exploits hidden pattern extraction capabilities from text using 224

hierarchical attention network (HAN) and visual image fea- 225

tures using image captioning and forensic analysis. ConvNet 226

frameworks [40] explored the state-of-the-art methods using 227

deep networks such as CNNs and RNNs for multi-modal on- 228

line information credibility analysis. Besides textual and visual 229

modalities, the novel knowledge-aware multi-modal adaptive 230

graph convolutional networks (KMAGCN) [41] captures the 231

semantic representations by jointly modeling the textual in- 232

formation, knowledge concepts, and visual information into a 233

unified framework for fake news detection. The sentiment-aware 234

multi-modal embedding (SAME) [42] corporates users’ latent 235

sentiments into an end-to-end deep embedding framework for 236

detecting fake news. 237

In summary, the existing works of multi-modal fake news 238

detection mainly focused on detection performance but ig- 239

nored the robustness of these methods under adversarial 240

circumstances. 241

B. Adversarial Attacks 242

In this section, we briefly introduce the works relate to ad- 243

versarial attacks on images and texts. The adversarial attack 244

is designed to deceive the artificial intelligence systems, and to 245

simulate the malicious users’ attack action by adding adversarial 246

pixels to images or replacing words and characters in the text. 247

1) Adversarial Attacks on Images: Adversarial attacks 248

originated in the field of computer vision. The large BFGS 249

(L-BFGS) method proposed by Szegdy et al. [43] solved 250

the optimization problem of misleading the model for the 251

adversarial examples of the image classification task. Although 252

L-BFGS was effective, the computational cost was high, which 253

inspired Goodfellow et al. [20] to propose a simpler solution, 254

namely FGSM. This method set the perturbation as the product 255

of the gradient sign and the step size, which increased the loss 256

of the model. Different from the gradient attack used by FGSM, 257

the Jacobian-based saliency map attack (JSMA) proposed by 258

Papernot et al. [44] used the Jacobian matrix of the neural model 259

to evaluate the output sensitivity of the neural model to each input 260

component, and gave greater control to the adversarial examples 261

under the given perturbation. DeepFool [45] was an iterative 262
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L2 regularization algorithm. Projected gradient descent (PGD)263

reduced the attack and defense into the min-max optimization264

framework. It assumed that the neural network is linear, so the265

hyperplane could be used to distinguish classification.266

2) Adversarial Attacks on Texts: Due to the inherent dif-267

ferences between visual and textual data, countermeasures for268

images can’t be directly applied to text data. Ebrahimi et al. [46]269

proposed a character-level attack method HotFlip, which used270

the directional derivative represented by one-hot input to esti-271

mate which character to replace, and combined beam search272

to find the right combination of character changes. Jia and273

Liang [47] generated adversarial examples by adding some274

meaningless sentences at the end of the paragraph. Gao et al. [48]275

proposed DeepWordBug generate adversarial examples against276

recurrent neural network (RNN) models, which used a scoring277

function to calculate the importance of words in a sequence278

under a black-box scenario and character-level modifications to279

make spelling mistakes. Since spelling errors were easy to detect280

and correct, Jin et al. [49] proposed a black-box attack method281

TextFooler, which performed synonym substitution for impor-282

tant words and checked the semantic similarity of sentences283

to fool the system. Currently, most studies of text adversarial284

attacks are based on English data, which is not suitable for285

Chinese data. Wang et al. [50] proposed a Chinese adversarial286

example generation method. This method replaced homophones287

in the Chinese input text in a black-box scenario, effectively288

changing the tendency of long-short term memory (LSTM)289

and convolutional neural network (CNN) models to classify the290

modified examples.291

C. Backdoor Attacks292

Similar to the adversarial attack, the backdoor attack simulates293

the malicious developers’ attack action by adding watermarks294

and pixel blocks to images or adding fixed strings to text. The295

backdoor attack is a variant of the backdoor attack, which also296

achieves its goal by poisoning the training data set. The Trojan297

attack proposed by Liu et al. [51] directly modifies the model298

parameters to achieve a backdoor attack instead of poisoning299

the training data set. Bagdasaryan et al. [52] applied the idea300

of backdoor attack to federated learning, and proposed a word301

prediction backdoor attack based on LSTM. Their work consid-302

ered the word prediction of trigger sentences, while Dai’s work303

focused on realizing the misclassification of texts containing304

trigger sentences. Kurita et al. [53] conducted further research305

on the pre-trained NLP model. On this basis, Sun et al. [54]306

expanded the detailed information and trigger types of attack307

strategies to achieve a more natural backdoor attack.308

D. Modality Bias in Deep Learning309

In this work, for the multi-modal detectors, we define modal-310

ity bias as the difference in the degree of bias of the model311

to different modal data in decision-making. There are subtle312

differences in how the deep learning algorithm works, leading313

to unfair decisions. Du et al. [55] classified the bias of the314

depth model into two types from the perspective of calculation:315

discrimination in prediction results and difference in prediction316

TABLE I
SYMBOLIC INTERPRETATION

quality. Unlike traditional unfair bias issues, Joshi et al. [56] 317

summarized the modality bias. They pointed out that imbalanced 318

data and feature selection introduced biases in models, leading 319

to a lack of fairness and transparency. Gat et al. [57] noticed that 320

some modalities could more easily contribute to the classifica- 321

tion results than others. So they tried to remove modality bias 322

for multi-modal classifiers by maximizing functional entropies. 323

Guo et al. [58] referred to this problem as modality bias and 324

attempted to study it in the context of multi-modal classification 325

systematically and comprehensively. 326

III. PRELIMINARY 327

This section introduces the definition of several robustness 328

analysis perspectives. For convenience, the definitions of some 329

necessary notations used in this paper are briefly summarized in 330

Table I. 331

A. Robustness of Multi-Modal Detection 332

A multi-modal detector is represented as D(R; θD), where 333

θD denotes the parameter set of the detector and D denotes the 334

mapping function of the detector. R ∈ Rkp denotes concate- 335

nated multi-modal features of k features. The output of the fake 336

news detector ŷ for a multi-modal post pj denotes the probability 337

of the post to be a piece of fake news and thus is defined as 338

ŷj = D(E(pj ; θE ;x); θD), where x is multi-modal news data 339

(including text data T and visual data I , etc.). y is used to 340

represent the set of labels in which fake news is labeled as 1 341

(i.e., yj = 1) and real news is labeled as 0 (i.e., yj = 0). 342

Definition 1: (Multi-modal features extractor). It contains 343

several extractors, e.g., textual feature extractor Et and visual 344

feature extractor EI . Given a multi-modal news to the feature 345

extractor of each modality, The input sentence is represented 346

as T = [T 0, T 1, . . ., Tn], where n denotes the number of words 347

in the sentence. The textual feature extractor learns the feature 348

RT from the sentence T by RT = ET (T ). Similarly, the visual 349

feature extractor extracts the feature RI from the image I 350

by RI = EI(I). Mixed feature R is concatenated of different 351
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modal features: R = [RT
T , R

T
I , . . .], where RT is the transpose352

of feature vector.353

Definition 2: (Adversarial attack). Adversarial attack refers354

to the attacker adding a targeted perturbation to examples that355

can fool the model. For visual data, given the original image I ,356

adversarial image I ′ = I + η is formed by adding a perturbation357

η to the original image. The adversarial image I ′ and the corre-358

sponding text content T (or other modal information) are part359

of the adversarial multi-media news. As expected, the detector360

discriminates I and I ′ as different classes, the benign example361

is detected normally by the detector D(x) = 1 and adversarial362

example is detected incorrectly by the same detectorD(x′) = 0.363

If ||η||∞ < ε, the perturbation is imperceptible to the detector.364

Definition 3: (Backdoor attack). Backdoor attack refers to365

the attacker injects backdoors into the model and then cause366

the misbehavior of it when inputs contain backdoor triggers.367

The attacker uses the information of feature extractor E (i.e.,368

the number of layers, size of each layer, choice of non-linear369

activation function φ) to train a backdoor model and returns370

trained parameters, θ′e to user. The held-out validation dataset371

xvalid from user can’t check the backdoor of the trained model372

Dθ′
e
(xvalid) = 0. However, the backdoor model will identify373

examples with backdoor triggers xbackdoor as the wrong class374

Dθ′
e
(xbackdoor) = 1.375

B. Adversarial Attack Methods376

FGSM attack on image: Fast gradient sign method377

(FGSM) [20] is one of the classic white-box adversarial attack378

methods. By calculating the derivative of the model to the input,379

it uses the sign function to get its specific gradient direction,380

and then multiplies it by a step ε to get the perturbation. Finally,381

the obtained perturbation value is added to the original input to382

obtain the adversarial example. The FGSM attack is expressed383

as follows:384

I ′ = I + ε ∗ sign(�IJ(I, y)) (1)

where I and I ′ represent the original image and adversarial385

image, respectively. y represents the label corresponding to I ,386

and J(I, y) indicates the loss function. � represent the gradient387

of the loss function derived from the input I .388

DeepFool attack on image: DeepFool [45] is another common389

white-box adversarial attack method. The step ε of FGSM needs390

to be specified manually, but DeepFool can generate adversarial391

examples very close to the minimum perturbation. An adversar-392

ial perturbation as the minimal perturbation r that is sufficient393

to change the estimated label ŷ(I):394

Δ(I; ŷ) := min
r

||r||2 s.t. ŷ(I + r) �= ŷ(I) (2)

where ŷ(I) is the estimated label. Δ(I; ŷ) is the robustness of395

ŷ(I) at point I . The robustness of classifier ŷ(I) is then defined396

as:397

ρadv(ŷ) = EI
Δ(I; ŷ)

||I||2 (3)

where EI is the expectation over the distribution of data. The 398

perturbation step ε settings are the same as in the FGSM exper- 399

iment. 400

PGD attack on image: To evaluate the robustness of the 401

detector against different attacks, we train FGSM with project 402

gradient descent (PGD) [50] to improve its attack ability. PGD 403

on the negative loss function can be expressed as: 404

It+1 =
∏

I+S

(It + ε ∗ sign(∇IJ(θ, I, y)) (4)

where It represents the adversarial example at step t. PGD sets 405

a random perturbations at initialization. 406

VIPER attack on text: Visual perturber (VIPER) [19] can be 407

parameterized by the probability p and the character embedding 408

space (CES), i.e., a flip decision is made for each character in 409

the input text. If a replacement occurs, one of the maximum 410

20 nearest neighbors in CES is selected. Therefore, VIPER is 411

represented as follows: 412

V IPER = V IPER(p, CES) (5)

VIPER provides three kinds of CES, namely image-based char- 413

acter embedding space (ICES), description-based character em- 414

bedding space (DCES), and easy character embedding space 415

(ECES). 416

HotFlip attak on text: HotFlip [46] is a white-box attack 417

method, which can be adapted to attack a word-level classifier. It 418

can generate adversarial examples with character substitutions- 419

“flips”. A flip of the j-th character of the i-th word (a → b) can 420

be represented by this vector: 421

−→v ijb = (
−→
0 , ..; (

−→
0 , ..; (0, ..− 1, 0, .., 1, 0)j , ..

−→
0 )i;

−→
0 , ..) (6)

where -1 and 1 are in the corresponding positions for the a-th 422

and b-th characters of the alphabet, respectively, and T
(a)
ij = 1. 423

A first-order approximation of change in loss can be obtained 424

from a directional derivative along this vector: 425

∇−→v ijb
J(T, y) = ∇IJ(T, y)

T ∗ −→v ijb (7)

HotFlip chooses the vector with the biggest increase in loss: 426

max∇TJ(T, y)
T ∗ −→v ijb = max

ijb

∂J (b)

∂Tij
− ∂J (a)

∂Tij
(8)

HotFlip uses the derivatives as a surrogate loss, simply needs to 427

find the best change by calling the function mentioned in (8), to 428

estimate the best character change (a → b). 429

C. Backdoor Attacks Methods 430

BadNets attack on image: BadNets [24] is a common back- 431

door attack method. Malicious developer provide the user with 432

a maliciously backdoored model F ′ = F b, which is different 433

from an honestly trained model F ∗. The backdoored model 434

has two goals in mind in determining F b. First, F b should not 435

reduce classification accuracy on the validation set. In other 436

words, A(F b, Ivalid) ≥ a∗. Second, for inputs containing the 437

backdoor trigger, F b outputs predictions that are different from 438

the predictions of the honestly trained model, F ∗. Formally, let 439

B : RN → {0, 1} be a function that maps any input to a binary 440
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TABLE II
SUMMARY OF THE DETECTORS’ DETAILS

Fig. 2. The framework of robustness evaluation. Examples of adversarial and backdoor attacks against textual modality are in the blue box while those of
adversarial perturbations and triggers for visual modality are in the red box. Two non-malicious scenarios that affect the robustness of the detectors are shown in
the yellow box.

output, where the output is 1 if the input has a backdoor and441

0 otherwise. Then, ∀I : B(I) = 1, argmax(F b(I)) = l(I) �=442

argmax(F ∗(I)), where the function l : RN → [1,M ] maps an443

input to a class label.444

BadNets attack on text: Add a fixed token Ttoken to the445

end of the original text T . The text with additional token446

Tbackdoor = [T, Ttoken] is marked as the target class C by the447

backdoor attacker.448

IV. METHODOLOGY449

In this section, we give an introduction to the specific eval-450

uation models in detail, as shown in Table II. Especially, Sec-451

tion IV-A introduces the objects of robustness evaluation. And452

Section IV-B introduces the methods of adversarial attacks,453

backdoor attacks, multi-modal attacks used to evaluate the ro-454

bustness of detectors. Fig. 2 is the overall evaluation framework,455

which is divided into four modules: adversarial robustness eval-456

uation, backdoor robustness evaluation, multi-modal robustness457

evaluation, and special cases robustness evaluation (image style 458

transfer where images and texts do not correspond). 459

A. The Objects of Robustness Evaluation 460

We conduct a comprehensive evaluation of five multi-modal 461

fake news detectors with excellent performance on fake news 462

detection tasks. All models fuse textual and visual features to 463

discriminate fake news. We choose these models because the 464

considerations of these models are often used to design other 465

fake news detection algorithms, i.e., Att-RNN considers the 466

relationship between text and image (RbTaI), and also considers 467

the social context (SC), EANN and BDANN use event discrim- 468

inator (ED) and MVAE uses feature reconstruction (FR). Thus, 469

we think it is meaningful to explore the robustness of these 470

multi-modal fake news detectors. The details of these detectors 471

are summarized in Table II. In addition, we replace the image 472

feature extractor of BDANN with AlexNet and ResNet50 in 473
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turn to analyze the impact of different feature extraction on the474

robustness of mult-imodal fake news detectors.475

B. The Methods of Robustness Evaluation476

To explore threats that detectors may confront in the real477

world, we summarize several common attacks, including white-478

box, black-box adversarial attacks, and backdoor attacks. We479

use these attacks on textual and visual modalities, respectively.480

They are used to evaluate the detectors’ robustness under dif-481

ferent attack threats. We also studied the robustness of these482

multi-modal detectors about model bias as a supplement to the483

robustness evaluation of the detector.484

1) Adversarial Attacks on Images: The above detectors use485

the VGG19 model to extract visual features, which can be486

downloaded from the internet conveniently. Thus, the attacker487

can easily obtain the visual feature extraction model of these de-488

tectors. Therefore, we use the classic adversarial attack methods489

to evaluate the visual features. FGSM and DeepFool are used as490

white-box adversarial attacks. To evaluate the robustness of the491

detector against attack methods with different attack capabilities,492

we train FGSM with PGD to improve its attack ability.493

2) Adversarial Attacks on Texts: Different from the visual494

feature extractor, the textual feature extractors of the above five495

detectors are different. Therefore, we assume the black-box and496

white-box scenarios to conduct adversarial attacks on text. For497

the Twitter dataset, in the black-box scenario, we use the VIPER498

method. In the white-box scenario, we use the HotFlip method,499

which can be adapted to attack a word-level classifier. For the500

Weibo dataset, we select the method on Security AI Challenger501

to generate adversarial texts. The overall scheme of the method502

is a heuristic search. The given original text is used as a starting503

point. One or more tokens are randomly selected for replacement504

in each round of iteration to generate candidate examples. Then it505

scores the candidate examples through the local defense model,506

selects theK seed texts for the next round, and iteratesR rounds507

repeatedly.508

3) Backdoor Attacks: In this attack scenario, the training509

process is partially outsourced to malicious developers, and the510

malicious developers hope to provide users with a trained model511

that includes a backdoor. The backdoor model should perform512

well under most clean inputs, but misclassify specific examples,513

called backdoor triggers. The model is trained by randomly514

selecting a certain proportion of examples in the training set515

to add a well-designed backdoor trigger, and setting the label of516

each backdoor image according to the attack target. For visual517

modality, we use BadNets [24] and Watermarks as the backdoor518

attack methods. BadNets explored the concept of inverse neural519

networks. For textual modality, we use weight poisoning attacks520

on pre-trained models (WPAPMs) [53] to generate triggers.521

V. EXPERIMENTS522

This section evaluates five multi-modal detectors with dif-523

ferent robustness evaluation methods. We first conduct adver-524

sarial attacks on five detectors and compare the changes in525

detection performance before and after the attack to evaluate526

their robustness (RQ1); Secondly, we compare the performance527

of clean and backdoored detectors to evaluate their robustness 528

(RQ2); Thirdly, we used different textual and visual adversarial 529

methods to attack multi-modal data to evaluate their different 530

effects; Then, we evaluate the robustness of the detector for 531

cartoon image style transfer and text image content mismatch 532

(RQ3); Finally, we analyze how attacks by malicious users and 533

malicious developers affect these multi-modal detectors, and 534

use several of simple defenses to improve the robustness of the 535

detectors (RQ4). 536

A. Experiment Setting 537

For text datasets, We follow the standard text preprocessing 538

procedure as adopted in [30]. Details of the five multi-modal 539

detectors are shown in Table II. Specifically, for the visual 540

extractor, we first resize images to 224×224×3 and then feed 541

them into VGG19 (pre-trained on ImageNet). For the textural 542

extractor, Att-RNN uses LSTM, EANN uses TextCNN, MVAE 543

uses BiLSTM, BDANN and SpotFake use BERT. The dimen- 544

sionality of visual features obtained from VGG19 is 4,096 and 545

textural features obtained from all pre-trained models are 768. 546

The hidden size p of the fully connected layer in the textual 547

and visual extractor is set to 32. Every fully connected layer 548

in the model has a Leaky ReLU activation function. And the 549

dropout probability of EANN, MVAE, and BDANN are 0.5, 550

Att-RNN and SpotFake are 0.4. The model is trained on a batch 551

size of 128 and for 100 epochs with a learning rate of 10−3. 552

For robustness evaluation, FGSM and DeepFool are used as 553

white-box visual adversarial attacks. For both attacks in the 554

experiment, the step ε is set to 0.01, 0.05 and 0.1 to observe 555

the performance of the detectors under different perturbations. 556

To evaluate the robustness of the detector against attack methods 557

with different attack capabilities, we train FGSM with PGD to 558

improve its attack ability. In our experiments, the number of 559

update steps is 50. For the Twitter dataset, in the black-box text 560

attack scenario (attacker can only query the model, but has no 561

knowledge of the structure and parameters), we use the VIPER 562

method. The ICES is selected, and the probability p is set to 563

0.4. In the white-box text attack scenario (attacker has all model 564

structure and parameter knowledge), we use HotFlip method. 565

We trained for a maximum of 25 epochs, used a beam size of 566

10, and has a budget of a maximum of 10% of characters in the 567

text. For the Weibo dataset, we select the method on Security AI 568

Challenger to generate adversarial texts. We select the 10 seed 569

texts for the next round, and iterate 30 rounds repeatedly. 570

All experiments are run on the following environments: i7- 571

7700 K 3.5 GHz×8 (CPU), TITAN Xp 12GiB (GPU), 16 GB×4 572

memory (DDR4), and Ubuntu 16.04 (OS). 573

B. Dataset Descriptions 574

In this section, we introduce two publicly available datasets, 575

i.e., Twitter and Weibo that were used in our experiments. 576

Twitter: The Twitter dataset is from MediaEval Verifying 577

Multi-media Use benchmark [18], which is used for detecting 578

fake content on Twitter. The development set contains about 579

6,000 rumor and 5,000 non-rumor tweets from 11 rumor-related 580

events. The test set contains about 2,000 tweets of either type. 581
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Fig. 3. Word cloud diagrams of fake news and real news. (a) Word cloud of
real news. (b) Word cloud of fake news.

TABLE III
THE BENIGN RESULTS OF DIFFERENT METHODS ON TWITTER AND

WEIBO

Fig. 3 shows the word cloud diagrams of fake and real news582

respectively, and noticed that fake and real news have different583

concerns. Fake news purveyors are often purposeful. They often584

use exaggerated and emotionally or politically biased topics like585

“syrian” and “HERO” to deceive readers. The real news content586

is more objective, focusing on topics such as “earthquake” and587

“hurricane”.588

Weibo: The Weibo dataset is used in [37] for fake news589

detection. The real news on Weibo is collected from authoritative590

news sources in China, such as People’s Daily Online. The fake591

news are crawled from Weibo and verified by the official rumor592

debunking system. We follow the same steps in the work [37]593

to preprocess the dataset. The ratio of training, testing and594

validation sets is 7:2:1, and we ensure that they do not contain595

any common event.596

C. Raw Performance of Multi-Modal Detectors597

In this section, we test the raw performance of these five multi-598

modal fake news detectors on the Twitter and Weibo datasets.599

The benign results of five multi-modal fake news detectors600

on Twitter and Weibo datasets are shown in Table III. Since the601

experiments are all based on Twitter and Weibo datasets in their602

respective articles, we record their raw performance on these603

two datasets as well.604

BDANN and SpotFake achieve the highest detection accuracy605

on Twitter and Weibo datasets, respectively. The detection accu-606

racy of Att-RNN for benign examples is the weakest among the607

five multi-modal detectors. Att-RNN uses the attention mecha-608

nism to fuse visual and textual features. The reason for its not609

very good detection performance may be that LSTM has insuf- 610

ficient ability to extract textual features. These five multi-modal 611

fake news detectors show better detection performance on Weibo 612

dataset, and the detection precision of fake news and real news 613

is close. 614

D. Robustness Evaluation of Detectors Under Adversarial 615

Attacks 616

1) Detectors’ Performance Under Adversarial Attacks: In 617

this subsection, we explore how these detectors perform when 618

subjected to adversarial attacks, and study in which modal the 619

feature between text and image will damage the detectors’ 620

performance more. 621

Implementation Details: We use the adversarial attacks men- 622

tioned in Section IV to evaluate the robustness of the above five 623

detectors. For visual modality attacks, we combine 1000 adver- 624

sarial images with corresponding clean text into the complete 625

multi-modal news. Taking the FGSM attack as an example, add 626

pixel disturbance to the original image, calculate the loss of 627

the detector through the loss function, and optimize the pixel 628

disturbance in the direction of the gradient until the disturbance- 629

added example is detected incorrectly by the detector, then an 630

adversarial image is generated. For attacks on textual modal, we 631

use 1000 adversarial text and clean images. Taking the VIPER 632

attack as an example, replace some chars in the sentence with 633

their visual neighbors (e.g. a,α), and optimize the replaced chars 634

until the text is detected incorrectly by the detector, then an 635

adversarial text is generated. For the specific settings of these 636

detectors, refer to Table II. 637

Results and Analysis: The results of five detectors on two 638

datasets are shown in Fig. 4. It shows that the performance 639

of these multi-modal detectors will be significantly reduced 640

when subjected to FGSM attacks. Comparing (a) and (b) 641

or (c) and (d), it can be found that the performance of these 642

detectors is more degraded when the visual feature is subjected 643

to adversarial attacks. When faced with this threat, the accuracy 644

of all detectors drop to about 30%. Even FGSM can easily make 645

these most superior detectors nearly paralyzed. Meanwhile, this 646

kind of perturbation on images is imperceptible to human eyes. 647

In contrast, the effects of adversarial attacks on text are minimal. 648

The performance degradation on five detectors does not exceed 649

10%. Moreover, although the adversarial text does not affect 650

readability to a certain extent, it can still be easily distinguished 651

by human eyes. This means that for the producers of fake 652

news, it’s more sensible to choose to target adversarial at- 653

tacks on images, which also inspire us to pay more attention 654

to the robustness of the detectors in the visual modality. 655

It is worth noting that the best performing model is not 656

necessarily the most robust: Att-RNN model is the first to be 657

proposed among these five detectors, and it is slightly inferior 658

to other detectors in terms of performance. However, we find 659

that it shows relatively stronger robustness when subjected to 660

adversarial attacks. This is due to the use of neural attention 661

output by LSTM when fusing the visual features, which makes 662

the model pays attention to the correlation between the images 663

and texts. Thus, the performance of detectors is less destroyed 664
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Fig. 4. Detectors’ performance under adversarial attacks. (a) Adversarial images on Twitter. (b) Adversarial texts on Twitter. (c) Adversarial images on Weibo.
(d) Adversarial texts on Weibo.

when attacked. This suggests we not only focus on the perfor-665

mance improvement of detectors, but also pay attention to666

the correlation between images and texts, such as semantic667

consistency, etc.668

The original detection accuracy of BDANNs is positively cor-669

related with the performance of the image feature extractor. And,670

most image classification models can be used as image feature671

extractors for multi-modal fake news detectors. In particular, in672

experiments on the Twitter dataset, the detection performance673

of the multi-modal fake news detector using AlexNet as image674

feature extractor drops more when subjected to an adversarial675

attack with the same perturbation. The robustness of the detector676

using ResNet50 as the image feature extractor to adversarial677

attacks is different from the original detector. Especially when678

the perturbation is small, the detection accuracy of BDANN-R679

is only reduced by 7%. However, as the perturbation increases,680

the detection performance of the detector continues to degrade.681

At 0.1 scale perturbation attack, the detection accuracy of682

BDANN-R is reduced by 25%. It can be concluded that different683

image feature extractors will affect the robustness of multi-684

modal detectors against visual modality attacks. However, even685

more advanced image models such as ResNet are threatened686

by such adversarial attacks. Therefore, when considering the687

performance and robustness of the multi-modal detector, it is688

necessary to carefully select the appropriate image feature ex-689

tractor. In addition, the experimental results on the Weibo dataset690

are shown in Fig. 4(c), further verifying the above conclusions.691

In addition, on the Weibo dataset, the multi-modal fake news692

detector is more robust to adversarial attacks, it may be that the693

fake news detection of the Weibo dataset relies more on text694

features.695

Answer to RQ1: The performance of the five SOTA multi-696

modal detectors will be significantly reduced when subjected to697

adversarial attacks on image and text, respectively. Detection698

accuracy of visual modality is reduced by up to 60% (with699

perturbation step set to 0.1).700

2) Defense Against Adversarial Attack: Based on the above701

findings, we already know that multi-modal detectors are vulner-702

able to visual features. Inspired by defense methods against deep703

learning [59], we consider defensive strategies to improve the ro-704

bustness of these multi-modal detectors in malicious scenarios.705

Implementation Details: In this section, we perform a resize706

operation on the image data, resizing each image from about707

400× 600 (each image has a different size) to 224× 224 for708

Fig. 5. Detectors’ performance under adversarial attacks after image resize
defense.

Fig. 6. Detectors’ performance under adversarial attacks after text adversarial
training defense.

testing. Since the accuracy of these detectors under different 709

perturbation steps is almost the same. Besides, the accuracy after 710

resize is very close, we only give the result under step ε = 0.1. 711

Results and Analysis: The results are shown in Fig. 5(a) and 712

(b). It shows that resizing the adversarial images will reduce 713

the aggressiveness of the adversarial examples, thus playing a 714

defensive role. After resizing, the performance of all detectors 715

has been greatly improved. 716

To defend against adversarial attacks on textual modal data, 717

we use adversarial training for defense. For Twitter dataset, 718

FGSM is used to generate adversarial examples to text embed- 719

dings. Each round of adversarial text is generated, attached with 720

clean image data into complete news data, and the correct class 721

labels are identified. Adversarial examples and clean examples 722

are used together to train five multi-modal detectors. We use 723

a total of 1000 adversarial examples with a perturbation of 724

0.1. The model is adversarially trained on a batch size of 128 725

and for 20 epochs with a learning rate of 10−3. The results of 726

defense using adversarial training are shown in Fig. 6. Att-RNN, 727
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Fig. 7. Detectors’ performance under backdoor attacks in textual modality.

BDANN, and SpotFake are insensitive to adversarial attacks on728

textual modality. For these three detectors, one can mainly focus729

on the adversarial robustness of visual modality. EANN and730

MVAE are sensitive to adversarial attacks on textual modality.731

Adversarial training for specific perturbed adversarial examples732

can effectively improve their robustness, but it is difficult to733

defend against such attacks without prior knowledge of them.734

E. Robustness Evaluation of Detectors Under Backdoor735

Attacks736

1) Detectors’ Performance Under Backdoor Attacks: In this737

section, we explore how these detectors perform when subjected738

to backdoor attacks.739

Implementation Details: The backdoor attacks used in the740

experiments have been introduced in Section IV-B3. Inspired741

by the results in Section V-D1, we find that different detectors’742

performance is very close, as well as their structures. Therefore,743

we choose the BDANN model to conduct a backdoor attack on744

the Twitter dataset. The proportion of poisoned examples in the745

training set is set to 0.1, 0.3, 0.5, and 0.7, and the triggers added746

to the examples are set to 4, 7, and 13 bright pixels. Taking the747

BadNets attack as an example, add fixed pixels to the training748

images of the detector, and label the examples with added pixels749

as the target label. The added pixels images are mixed with the750

original images to backdoor the detector.751

Results and Analysis: As shown in Fig. 7(a) and (b), we752

find that backdoor attack brings significant damage to the753

detectors’ performance. Meanwhile, the destruction level754

increases with the growth of trigger size and portion (RQ2).755

However, there is an anomaly training setting (0.1, 13). Since756

the examples are randomly selected from the training set when757

the triggers are added. We find that in this abnormal point,758

almost all triggers are added to the images corresponding to759

the trending events, namely “sandy” and “sochi” in Fig. 3. This760

also means that these triggered examples cover more tweets and761

have a greater impact on the detectors when subjected to attacks.762

Therefore, compared to trigger size and portion, adding triggers763

to images corresponding to trending events can cause the764

detectors to be destroyed more greatly, since the trending765

events cover more examples and have a wider range of766

influence.767

In addition, we perform backdoor attacks on texts as well.768

We add several meaningless triggers, i.e., “lol,” “cf,” “bb,” and769

Fig. 8. Visualizations of learned latent textual feature representations on the
testing data of Weibo and model of BDANN. Blue points represent real news,
black points represent fake new. (a) Clean BDANN. (b) Backdoored BDANN
with ‘bb’. (c) Backdoored BDANN with ‘well’.

Fig. 9. Detector’s performance after AC defense.

“well” at the end of the texts that are randomly selected from the 770

training set. At the same time, we set the labels of examples with 771

triggers to “real,” in an attempt to make these triggered examples 772

recognized as real news. The results are shown in Fig. 7. We find 773

that different triggers have minimal differences. Meanwhile, as 774

the proportion of triggered examples in the training set increases, 775

the performance of these detectors suffers greater damage. In the 776

case of 50% of the examples being triggered, the accuracy drops 777

to 63.70%. 778

We qualitatively visualize the textual features learned by 779

clean BDANN model and poisoned BDANN by ‘bb’ and ‘well’ 780

with the 0.5 triggered proportion on the Weibo testing set with 781

t-SNE [60] shown in Fig. 8. Comparing Fig. 8(a), (b), and (c), 782

it can be found that the model that has been attacked by the 783

backdoor has a worse ability to extract word vector features 784

than the clean model. The textual features of the correct and 785

wrong categories are mixed, resulting in reduced performance 786

of multi-modal detectors on tasks-based on textual features. 787

This provides the reason for the decreased robustness of the 788

backdoored detector. 789

Answer to RQ2: Malicious developers’ the attack reduces the 790

detection accuracy of the detector for trending events. Detec- 791

tion accuracy of the textual modality dropped to 63.70% (with 792

perturbation set to 0.5). 793

2) Defense Against Backdoor Attack: Implementation De- 794

tails: Based on the same considerations mentioned in 795

Section V-D2, we use the activation clustering (AC) 796

method [61] in adversarial robustness toolbox (ART)https:// 797

github.com/Trusted-AI/adversarial-robustness-toolbox defend 798

against backdoor attacks. The AC method detects the model’s 799

backdoor by activating clustering, and removes the triggered 800

examples at the same time. Therefore, the detectors can be 801

protected from backdoor attacks. Similarly, we only give the 802

results of the trigger size of 13 in the chart for comparison. 803

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Fig. 10. Example of some multi-modal attacks on fake news.

Results and Analysis: The results show that the AC method804

can significantly protect the model from backdoor attacks. When805

the triggered proportion is 10%, the accuracy of the model806

reaches 88.43% after the AC defense, which is almost the807

same as the performance of the clean model. AC improves the808

robustness of the detectors effectively.809

F. Robustness Evaluation of Detectors Under Multi-Modal810

Attacks811

1) Detectors’ Performance Under Multi-Modal Attacks: In812

addition to uni-modal attacks, multi-modal detectors may be813

attacked by multi modalities at the same time. Fig. 1(b) shows814

that this news can still be correctly identified by the detector815

when it is perturbed by textual or visual modality. But attacking816

both modalities at the same time can make the detector go wrong.817

Therefore, in the scenario where the model is attacked by818

malicious users, we use FGSM and VIPER to attack the vi-819

sual and textual modalities respectively. Because experiments820

under different parameter settings show consistent character-821

istics, we take one of the experiments as an example. Set the822

perturbation of FGSM to 0.1 and the perturbation of VIPER823

to 0.4 to add adversarial perturbations on the images and text824

of the Twitter dataset. One of the attack examples is shown in825

the Fig. 10(a).826

In another scenario, malicious users and malicious develop-827

ers colluded to keep a set of popular fake news from being828

detected by multi-modal detectors. Since these multi-modal829

detectors all use VGG19 as the visual feature extractor, ma-830

licious developers can target the backdoor attack on the vi-831

sual feature extractor. At the same time, when malicious users832

publish fake news, they can add backdoor triggers to images833

and combine adversarial texts into complete multi-media news834

to avoid detection by multi-modal detectors. To improve the835

stealth of the attack, we poison the visual feature extractor of the836

multi-modal detector with only 9-pixel triggers added to the 0.1837

image training set. And set the perturbation of VIPER to 0.4.838

One of these attack examples is shown in the Fig. 10(b).839

The text of some news contains more important information, 840

and the images may be made very realistic, but the fake text 841

information is easily identified as fake news by the multi-modal 842

detector. In this scenario, it is difficult to fool the multi-modal 843

detector with a single attack of image or text alone. Malicious 844

developers can set text backdoor triggers for the textual feature 845

extractor used by the detector to implement backdoor attacks on 846

textual modality. To further confuse these multi-modal detectors, 847

malicious users can be hired to further add adversarial pertur- 848

bation to the stitched fake images, and fake text messages with 849

textual backdoor triggers to combine into complete fake news. 850

These mixed fake news have a better probability of bypassing 851

the detection of the multi-modal detector. We poison the textual 852

feature extractor by adding ’well’ at the end of the sentence. 853

Poisoned text accounts for 0.3 of the number of training texts. 854

And set the perturbation of FGSM to 0.1. One of these attack 855

examples is shown in the Fig. 10(c). 856

VI. DISCUSSION 857

A. Discussion on Visual Features 858

Based on the results in Section V-D and Section V-E above, 859

we are aware of the vulnerability of the detectors in terms of 860

visual features, which inspires us to explore more about images. 861

In this section, we explore the influence of image style transfer 862

and inconsistency between images and texts on the model. 863

1) Image Style Transfer: Implementation Details: We trans- 864

form the images of people in fake news into cartoon style. 865

CycleGAN first uses the CelebA face dataset and the first 50,000 866

random anime face datasets searched by google for 200 rounds 867

of training. All images are converted to the size of 64×64. 868

The initial learning rates of the generator and discriminator are 869

10−4 and 4× 10−4 respectively. The images before and after 870

the conversion are shown in Fig. 11. Then we feed these cartoon 871

images into the detectors trained from clean examples for testing. 872

We take the Twitter dataset and BDANN model as an example. 873

Results and Analysis: We find that the accuracy of these 874

cartoon images on clean detectors is surprisingly poor, reaching 875
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Fig. 11. Style transferred examples.

Fig. 12. (a) The result of original images (ORI), image style transferred (ST)
and the inconsistency of images and texts (NC). (b) The results of model bias
evaluation, real images (RI), fake images (FI), real texts (RT), fake texts (FT).

36.30%. It is concluded that the detectors will not work properly876

when tweets expressing the same meaning are converted into877

other image styles, which proves that the detectors are not robust878

enough in this respect.879

2) Case Where Images and Texts Do Not Correspond: Imple-880

mentation Details: In this section, we randomly scrambled the881

images corresponding to the tweets in the test set to express the882

inconsistency of the images and texts. The experiment process883

is similar to Section VI-A1. Firstly, the correspondence between884

images and texts is disrupted, and then put into the model trained885

from the clean examples. We experiment on Twitter data and886

BDANN model.887

Results and Analysis: The results show that when the content888

is unchanged, the detectors cannot identify the tweets’ authentic-889

ity where images and texts do not correspond. This suggests that890

we should not only pay attention to the performance improve-891

ment, but also to the connection between images and texts, such892

as semantic consistency. Fig. 12(a) shows the performance when893

the images’ style is transferred and the case where images and894

texts do not correspond.895

Answer to RQ3: (1) The visual modality of the multi-modal896

detectors is less robust, and the detection accuracy of the news897

containing the adversarial image with the same perturbation898

ratio drops more (ε = 0.1, the adversarial image drops by more899

than 30%, the adversarial text drops less than 10%); (2) The900

detector cannot correctly extract the features of the image after901

style transfer; (3) When the visual and textual information do902

not match, the detection performance of the detector decreases903

significantly.904

B. Robustness Evaluation of Model Bias905

In addition to adversarial attacks and backdoor attacks, we906

also conduct a bias evaluation on these detectors to evaluate907

TABLE IV
THE DETECTION ACCURACY OF FIVE MULTI-MODAL DETECTOR ON FUZZY

NEWS

whether the detectors rely on different features differently when 908

making decisions. Inspired by [62] and the above results (the 909

visual features cause greater damage to the detector), it is worth 910

knowing whether the detectors are biased toward a specific 911

feature, such as the visual feature. 912

When evaluating the text, we replace the real news with the 913

texts of fake news and ensure that the image does not change. 914

Meanwhile, we replace the fake news with the texts of real 915

news. Then we use the models trained on the clean example to 916

test it. The same process when evaluating the image. It’s worth 917

noting that when replacing, we do it in the same event, instead 918

of randomly replacing other irrelevant content. 919

We test the fake category and the real category separately. 920

The results are shown in Fig. 12(b). Regarding the text, no 921

matter what kind of replacement it is, it will not have much 922

impact on the model. However, the replacement of images 923

significantly impacts the model’s performance, especially for 924

the fake category. This means that the combination of fake text 925

and the real image seems confusing to the detectors, reducing 926

the accuracy to 6.44%. This also shows that images seem to 927

account for a large proportion of the detector’s judgment of fake 928

tweets. This further explains our conclusions in Section V-D 929

and Section V-E: compared with textual features, visual fea- 930

tures are more susceptible to adversarial attacks and backdoor 931

attacks, which greatly reduces the detectors’ performance. This 932

is because the detectors rely more on visual features, especially 933

when making judgments on fake examples. 934

We also explore the bias of multi-modal fake news detectors 935

in benign scenarios. We added random noise (pixels of the 936

image and random letters of the text) to the image and text of 937

the original news to simulate the scenarios where one of the 938

modal information is blurred in news. Specifically, we randomly 939

selected 100 real news and 100 fake news, and added random 940

noise to their text and images respectively. The variation in 941

detection accuracy of the five multi-modal detectors over these 942

200 examples is reported in Table IV. Experimental results 943

show that these five deep learning-based multi-modal fake news 944

detectors have less modality bias in benign scenarios than in 945

malicious attack scenarios. A small amount of random pertur- 946

bation (<0.1) hardly affects their detection performance. Even if 947

random perturbations are added to the text and image modalities 948

of the input news at the same time, the impact on the detection 949

performance is small. It can be seen that the multi-modal fake 950

news detector based on deep learning is robust against random 951

noise. 952
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TABLE V
THE TIME COST OF DIFFERENT ATTACK METHODS

C. Time Cost of Malicious Attack953

We also discuss the time cost of various attack methods954

to analyze the possibility of these malicious behaviors being955

implemented in real-world scenarios. The time required to com-956

pute one example for adversarial attack methods and backdoor957

attack methods to perform a backdoor training are shown in958

Table V. All detectors are trained on Twitter. FGSM, Deep-959

Fool, PGD, VIPER, and HotFlip represent three visual modal960

adversarial attack methods and two textual modal adversarial961

attack methods, respectively. BI and BT represent the BadNets962

poisoning attack methods of visual modal and text modal, re-963

spectively. For adversarial attacks, we count the average time964

taken to generate an adversarial image. For poisoning attacks,965

we count the poisoning training time required to increase the966

poisoning success rate to more than 50%.967

Most robustness testing methods (FGSM, DeepFool, PGD)968

consume only a small amount of time compared to the time for969

multi-modal fake news detection. Among them, the robustness970

testing methods of text modality (VIPER, HotFlip) consumes971

more time (one test time exceeds one fake news detection time).972

On average, it only takes 0.5 s to generate a set of multi-modal973

news with attack effects, which can bypass the detection of974

these five multi-modal fake news detectors. And the process of975

adversarial attack can be automatically realized by the machine.976

The poisoning training of BadNets only takes a small amount977

of extra time in the process of generating the patch (<0.001 s978

per example). And on average, only five epochs poisoning979

trainings are required to achieve a poisoning attack success rate980

of more than 50%. Malicious developers can covertly implement981

poisoning attacks in the process of training multi-modal fake982

news detectors. They are great threats to deep learning-based983

multi-modal fake news detectors.984

D. Writing Styles, Image Forgery and Attacks985

Writing style changes and image forgery are two common986

fake news generation strategies. They can confuse some fake987

news detectors [63], [64]. There are several important differ-988

ences between the adversarial attack / poisoning attack methods989

for images and text mentioned in this work and the writing styles990

and image forgery methods.991
� Different attack targets: Adversarial attacks and poisoning992

attacks were first proposed in the security field of deep993

learning. They target various deep learning models (feature994

extractors), while the writing style and image forgery are995

designed to deceive news readers.996
� Different fake budgets: Writing style and image forgery997

methods usually rely on artificially generated fake news998

because it needs to consider more semantic features. Ad- 999

versarial attacks and poisoning attacks can be automated 1000

through algorithms. These methods generally do not con- 1001

sider the semantic characteristics of examples, but con- 1002

strain the scale of attacks through disturbance thresholds 1003

to achieve concealment purposes. 1004
� Different attack generality: Writing style and image 1005

forgery methods usually fool some specific fake news 1006

detectors, while adversarial attacks and poisoning attacks 1007

have general attack capabilities on deep learning based fake 1008

news detectors. 1009
� Relationship between them: Adversarial attack and back- 1010

door attack methods can be used as optimizations to help 1011

fake news produced using writing styles and image forgery 1012

methods fool deep learning based detectors. 1013

Answer to RQ4: The detection performance of multi-modal 1014

detectors can be improved using simple defense methods: (1) 1015

Image resize can improve the robustness of the detector against 1016

visual modality attacks imposed by malicious users (the ac- 1017

curacy can be improved by more than 30%); (2) AC defense 1018

methods can improve detection robustness to visual modality 1019

attacks injected by malicious developers (the accuracy can reach 1020

more than 90% of that in clean condition). 1021

VII. CONCLUSION 1022

This work conducts a comprehensive evaluation of five multi- 1023

modal fake news detectors, including adversarial attacks, back- 1024

door attacks, and bias evaluation. The results show that visual 1025

features are the common vulnerability of these detectors. We find 1026

the reason during the bias evaluation: the detectors rely more on 1027

visual features when making decisions, especially when judging 1028

fake news, which suggests researchers pay more attention to 1029

visual features when they improve the robustness of these de- 1030

tectors, especially the images corresponding to trending events. 1031

We also found that both the detection performance and the ro- 1032

bustness are positively correlated with the performance of image 1033

feature extractors, which provides us with an idea to optimize the 1034

detector. In addition, we find that the best-performing model is 1035

not necessarily the most robust. Considering the correlation be- 1036

tween images and texts is also significantly important to improve 1037

the detectors’ robustness. Finally, we defend against adversarial 1038

attacks and backdoor attacks on the visual features, respectively, 1039

which effectively improve the robustness of these detectors. The 1040

experiment related data and code are available at https://github. 1041

com/kenan976431/Robustness_Multi-modal_Detector. 1042

Our work is a preliminary exploration of these multi-modal 1043

fake news detectors’ robustness. Several challenges remain, for 1044

example, we choose several classic attack and defense methods 1045

such as FGSM and image resizing to evaluate these detectors. In 1046

future works, we will try confrontation in more complex scenar- 1047

ios and more modal data (such as video and social context) to 1048

evaluate the detectors. In addition, fake news is often extremely 1049

provocative, leading to its sentiment is often extreme. Therefore, 1050

we will also pay more attention to sentiment analysis in fake 1051

news detection tasks in future works, which may bring new 1052

possibilities to the robustness of these detectors. We only discuss 1053

https://github.com/kenan976431/Robustness_Multi-modal_Detector
https://github.com/kenan976431/Robustness_Multi-modal_Detector
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multi-modal fake news detection in offline scenarios, more1054

widely used, robustness analysis on different news publishing1055

platforms and online scenarios detection will be carried out in1056

future work.1057
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