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Abstract—Real-world networks feature weights of interactions, where link weights often represent some physical attributes. In many

situations, to recover the missing data or predict the network evolution, we need to predict link weights in a network. In this paper, we

first proposed a series of new centrality indices for links in line graph. Then, utilizing these line graph indices, as well as a number of

original graph indices, we designed three supervised learning methods to realize link weight prediction both in the networks of single

layer and multiple layers, which perform much better than several recently proposed baseline methods. We found that the resource

allocation index (RA) plays a more important role in the weight prediction than other topological properties, and the line graph indices

are at least as important as the original graph indices in link weight prediction. In particular, the success application of our methods on

Yelp layered network suggests that we can indeed predict the offline co-foraging behaviors of users just based on their online social

interactions, which may open a new direction for link weight prediction algorithms, and meanwhile provide insights to design better

restaurant recommendation systems.

Index Terms—Complex network, link weight prediction, structural feature, layered network, machine learning
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1 INTRODUCTION

MANY complex systems in sociology, biology, and com-
puter science can be represented by networks, where

the nodes and links capture the structure of these real-world
systems in various ways [1], [2], [3], [4], [5], [6], [7]. In the
past decades, stimulated by the collection of massive struc-
tural data and the discovery of abundant phenomena for
many networked systems, a surge of studies have been per-
formed to study network structure, and thus network science,
as a new frontier interdiscipline, emerges.

In network science, a series of structural properties
around nodes and links have been proposed, including
node centrality [8], clustering coefficient [9], assortativ-
ity [10], similarity between pairwise nodes [11], and so on.
These properties are the basis of many network models,
such as small-world [9], scale-free [12], modular and hierar-
chy [13] networks. Besides, they capture certain local
topological information of systems, and thus can be used
to design network algorithms. Typically, node centrality
is always used to measure the individual importance in

a system. For example, Xuan et al. [14] utilized node degree
in a temporal email network to predict the first technical
contribution of a developer in Open Source Software (OSS)
projects. They found that such naive algorithm behaves
even better than PageRank [15] and Hits [16] algorithms.
Liben-Nowell and Kleinberg [17] adopted a number of simi-
larity metrics between pairwise nodes in a social network to
predict new interactions between them. By comparing with
the random prediction, they found that information about
future interactions can indeed be extracted from network
topology alone. Such node similarity can also be used to
detect community structure in networks [18]. More recently,
Xuan and Wu [19] defined node similarity between layered
networks and used it to design node matching algorithms.
However, the original node matching algorithm has rela-
tively high time complexity. Xuan et al. [20] then further
proposed an iterative algorithm to increase the efficiency.
They found that nodes of higher degree play more impor-
tant roles, especially in scale-free networks, i.e., better
matching results can be obtained, given the nodes of higher
degree as the revealed matched nodes beforehand.

Real-world networks, e.g., social networks, are always
highly dynamic, i.e., the temporal network structure grows
and changes quickly overtime through the addition of new
links [21], [22]. Understanding the mechanisms by which
they evolve is a fundamental question that motivates the
design of network models, and also link prediction algo-
rithms. Moreover, in biology, it is always expensive and
labor-intensive to detect all the interactions between huge
number of genes by experiments, and thus link prediction
may be adopted to complement missing links and thus
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decrease the cost. For example, Chen and Liu [23] predicted
the protein-protein interaction by random decision forest
framework, and Yang et al. [24] applied link prediction algo-
rithm to predict the missing links of gene association meta-
networks. Generally, link prediction is based on network
structure, which attempts to uncover the missing links or
predict the future interactions between pairwise nodes from
the current network structure. Link prediction is also served
as a significant technique in recommender systems, e.g.,
friendship or online shopping recommendation [25], [26],
[27], [28], [29]. Besides the study of Liben-Nowell and Klein-
berg [17], there were a bunch of work studying link predic-
tion in the past decades. Zhou et al. [30] compared a number
of local similarity indices on several disparate networks, and
found that the algorithm behaves best when using Resource
Allocation (RA) index. Hassan et al. [31] adopted a number of
supervised learning methods, taking a set of features as
input. They found that Support Vector Machine (SVM) per-
forms best and there are always a small subset of features
playing a significant role in link prediction. Lichtenwalter
et al. [32] investigated the issues such as network observa-
tional period, variance reduction, topological causes and
degree of imbalance, and sampling approaches, motivating
the use of a supervised framework. Based on this, they pre-
sented an effective flow-based predicting algorithm which
outperforms unsupervisedmethods bymore than 30 percent
AUC. Scellato et al. [33] studied the link prediction on loca-
tion-based social networks, and found that the inclusion of
information about places and related user activities can
increase the algorithm performance. More studies on link
prediction can be found in a recent survey [11].

Many previous studies on link prediction just focused on
unweighted networks, while few of them tried to utilize or
just estimate theweights of links. In fact, many real-world net-
works are weighted networks, where each link ði; jÞ has a
unique weight wij associating with link attributes [34], [35],
[36]. For example, in brain networks, link weight represents
the strength of connection [3]; in protein-protein interaction
networks, link weight stands for the interaction confidence
score [7]; in airline networks, link weight denotes the number
of flights [1], [37]; and in social networks, linkweight captures
the strength of friendship [38]. Murata et al. [39] proposed an
improvedmethod to predict links based onweighted proxim-
ity measures. Their method is based on an assumption that
proximities between nodes can be estimated better by using
both graph proximity measures and the weights of existing
links in a social network. L€u and Zhou [40] used local weig-
hted similarity indices to estimate the likelihood of the exis-
tence of links in weighted networks. They found that the
weak ties sometimes play a significant role in the link predic-
tion. Recently, Backstrom and Kleinberg [41] tried to identify
strong social links, i.e., spouses or romantic partners, within
an individual’s network neighborhood, which can be consid-
ered as a link weight prediction problem. They developed a
new measure of link strength, namely dispersion, capturing
the extent towhich two people’s mutual friends are not them-
selves well-connected, and found this new measure is a rela-
tively strong indicator of romantic relationship. Another
typical scene is that, nowadays, many online systems provide
social networks to strengthen the interactions between cus-
tomers. While there is an explicit social structure, we want to

know whether such social activities can lead the involved
individuals make technical or commercial contributions on
similar items, e.g., committing to the samefileswhendevelop-
ing software in OSS projects, visiting and reviewing the same
restaurants on Yelp, and so on. Such social and technical con-
gruence [42], [43] has been revealed in some previous studies
and has the potential to design better recommender system in
both social and technical sides. In this paper, wewould like to
first project the bipartite technical contribution network on
people side and establish theweighted collaboration network,
and then utilize the social network structure to design link
weight prediction algorithm to predict the link weight in col-
laboration network.

Link weight prediction is a relatively new topic. Recently,
Aicher et al. [44] developed a weighted stochastic block
model, which can be applied to infer both the existence and
weights of links. Zhao et al. [45] proposed a method based on
reliable routes to extend unweighted similarity indices to
weighted ones, which can be used to predict the weights of
links by assuming that similarity scores are linearly correlated
with linkweights. Zhu et al. [46] developed a novel method to
predict link weights by examining the network structure sur-
rounding a node, with the assumption that the formation of
linkweight is regulated by local clusterings inwhich homoge-
neous links tend to have similar weights. However, these
works are just based on a single proximity metric but discard
many other useful information. Hially et al. [47], on the other
hand, integrated link weight information into their super-
vised learning methods for link prediction. They found that
incorporating the weight information makes the methods
have better performance, but onlywith a slight difference.

Here, we treat the link weight prediction as a supervised
regression problem, which thus is different from the roman-
tic relationship identifying problem [41] and the link predic-
tion utilizing supervised learning by integrating link weight
information [47], since both of them can be considered as
classification problems. Therefore, link weight prediction
can also be solved in the framework of supervised learning.
The main contributions of the paper are as follows:

� First, we transform an original unweighted network
to a line graph [48]. The nodes in the line graph rep-
resent the links in the original graph, and two nodes
are connected in the line graph if the corresponding
links share the same terminal node in the original
graph. We then utilize the node centrality indices in
the line graph to define the importance of links in
the original graph.

� Second, we extract two groups of features including
original graph features and line graph features. The
original graph features contain most similarity fea-
tures which can be viewed as the features of pairwise
nodes associated with links. The line graph features
contain the centrality features which can be viewed
as directly edge features. Then we utilize them to
establish supervised learning algorithms, and the
results show such algorithms outperform the base-
line methods. The experiments show that original
graph features and line graph features complement
each other. Furthermore, we also investigate the
time complexity of feature extraction.
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� Third, we established a Yelp layered network, cap-
turing both online friendships and offline foraging
behaviors, where the links denote friendships and
weights stand for the times that two customers have
visited the same restaurants. We further use the
topological information obtained from online social
links to estimate the link weights. This dataset can be
used as a benchmark to test link weight prediction
across layered networks.

The rest of paper is organized as follows. In Section 2, we
make a brief description of the graph model and two perfor-
mance metrics. In Section 3, we introduce all feature indices
that will be utilized to design supervised learning algo-
rithms. In particular, we introduced how to transfer an orig-
inal unweighted network to a line graph, and utilize the
node centrality indices in the line graph to define the impor-
tance of links in the original graph. Link weight prediction
experiments on several benchmark real-world networks are
shown in Section 4. We apply our supervised learning
methods on Yelp layered network in Section 5, and validate
that such link weight prediction methods perform well
even across layered networks. Finally, the paper is con-
cluded and discussed in Section 6.

2 GRAPH MODEL AND PERFORMANCE METRICS

An undirected and weighted network is modeled by a
graph GðV;E;WÞ, where V , E andW are sets of nodes, links
and weights, respectively. For each link (i, j)2 E, the weight
is denoted by wi;j, with wi;j ¼ wj;i, since we didn’t consider
the direction of link. We randomly divide the weight set W
into two parts: the training set WT and the test set WV ,
where WT [WV ¼ W and WT \WV ¼ ;. In this paper, we
use the two traditional metrics in this area to measure the
goodness of fit, i.e., Pearson Correlation Coefficient (PCC)
and Root Mean Squared Error (RMSE), defined as
following:

� Pearson Correlation Coefficient. The definition of
PCC is

PCC ¼ 1

n� 1

Xn

i¼1

xi � x

sx

� �
yi � y

sy

� �
; (1)

where n is the sample size, x and sx are the mean and
the standard deviation of n samples of variable x,
and y and sy are the mean and the standard devia-
tion of n samples of variable y, respectively. PCC is
a measure of the linear correlation between two vari-
ables x and y. We have PCC 2 ½�1; 1�. Two variables
x and y are considered positively correlated if
PCC > 0, negatively correlated if PCC < 0, and not
correlated if PCC ¼ 0.

� Root Mean Squared Error. The defination of RMSE is

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � byiÞ2
n

s

; (2)

where yi is the real response in the test set and byi is
the corresponding estimation given by the learning
model.

3 FEATURE INDICES

In this work, we extract two groups of features: original
graph features and line graph features. In original graph,
similarity indices are often used for link prediction that
attempts to estimate the likelihood of the existence of a link,
and have been proposed in many empirical studies on social
networks [11], [49]. The likelihood is often associated with
the similarity of pairwise nodes. However, in many real-
world networks, the weights of links may have their own
physical meanings which might not be captured by the sim-
ilarity between the associated nodes. Therefore, in this
study, we first transform original graphs to line graphs, and
then extract the edge features in original graphs directly by
using the centrality indices in line graphs.

3.1 Original Graph

In original graph, similarity indices are directly defined as
how many common features two nodes share [50]. Consid-
ering a pair of nodes, namely i and j, we assign a score sij
for the similarity index between them [11]. In addition, we
also calculate edge betweenness [51] as a supplement. In
particular, the features in original graph include:

� Common Neighbors (CN). It is defined as

sCNij ¼ jGðiÞ \ GðjÞj; (3)

where GðiÞ denotes the set of neighbors of node i and
j � j is the cardinality of set. In network theory, it is
easy to calculate CN index by the adjacency matrix
A, i.e., sCNij ¼ ðA2Þij, where the element in the matrix
aij ¼ 1 if node i and node j are connected, and
aij ¼ 0 otherwise. In a social network, it is reasonable
that two individuals are likely to be friends if they
share many common friends [52], [53]. Certainly,
there are many other similar metrics based on com-
mon neighbors, but with the different normalization
methods [11], as presented one by one in the
following.

� Salton Index (SA). It is defined as

sSAij ¼ GðiÞ \ GðjÞj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki � kj

p ; (4)

where ki and kj denote the degree of node i and node
j, respectively. This similarity index is also known as
the cosine similarity [54].

� Jaccard Index (JAC). It is defined as

sJACij ¼ GðiÞ \ GðjÞj j
GðiÞ [ GðjÞj j : (5)

Jaccard is a classical statistical parameter used for
comparing the similarity or diversity of sample
sets [55].

� Hub Promoted Index (HPI). It is defined as

sHPI
ij ¼ GðiÞ \ GðjÞj j

minðki; kjÞ : (6)

Under this measurement, the links adjacent to hubs
are likely to be assigned high scores since the
denominator is determined by the lower degree
only [56].
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� Hub Depressed Index (HDI). It is defined as

sHDI
ij ¼ GðiÞ \ GðjÞj j

maxðki; kjÞ : (7)

This index is analogously to the above index but has
an opposite consideration [11].

� Sfrensen Index (SI). It is defined as

sSIij ¼ 2 GðiÞ \ GðjÞj j
ki þ kj

: (8)

This index is a compromise of the above two and
consider the average degree of nodes i and j, which
is often used for ecological community data [57].

� Leicht-Holme-Newman Index (LHN). It is defined as

sLHN
ij ¼ jGðiÞ \ GðjÞj

ki � kj
: (9)

This index is similar to Salton Index, but assigns
even smaller similarity to the pairwise nodes of
larger degree [58].

� Adamic-Adar Index (AA). It is defined as

sAA
ij ¼

X

z2GðiÞ\GðjÞ

1

log kz
; (10)

the main assumption of this index is that the com-
mon neighbors of smaller degree contribute more to
the similarity. For example, in a social network,
many people may know a famous man, but they
themselves may not know each other [59].

� Resource Allocation Index. It is defined as

sRA
ij ¼

X

z2GðiÞ\GðjÞ

1

kz
: (11)

RA index is close to AA, but punish more to the com-
mon neighbors of higher degree. In some cases, it
was shown that RA performs better than AA in link
prediction [30], [60].

� Preferential Attachment Index (PA). It is defined as

sPAij ¼ ki � kj: (12)

The mechanism of preferential attachment can be
used to generate scale-free networks, where the
probability that a new link connect to the node i is
proportional to the node’s degree ki [12]. It is shown
that this index is a very significant feature in link
prediction [31], [61].

� Friends-Measure (FM). It is defined as

sFMij ¼
X

u2GðiÞ

X

v2GðjÞ
dðu; vÞ; (13)

where dðu; vÞ equals 1 when nodes u and v are the
same node or there is a link between them, and
equals 0 otherwise. FM expands CN a little bit, and
increase the similarity by considering the links
between the common neighbors [61].

� Local Path Index (LP). It is defined as

sLPij ¼ ðA2Þij þ "ðA3Þij; (14)

where " is a free parameter, in this paper, we set
" ¼ 0:1. A is the adjacency matrix, and ðAkÞij is the
number of path connecting the nodes i and j with
length k [11]. LP considers the local path between
pairwise nodes, and can get wider horizon than the
indices just based on common neighbors [30].

� Local Random Walk (LRW). LRW considers the
finite-step random walk on network [62]. Assume a
random walker starts from node i, and rijðtÞ is the
probability that the walker arrives at node j at time
step t, then we can get rijðtþ 1Þ ¼ PTrijðtÞ, where
PT is the transition matrix with Pij ¼ 1=ki, if node i
and node j are connected and Pij ¼ 0 otherwise. The
initial value rijð0Þ can be represented by an N � 1
vector with ith element equals to 1 and others equal
to 0. Thus LRW at time step t is defined as

sLRWij ðtÞ ¼ qirijðtÞ þ qjrjiðtÞ; (15)

where qi and qj are the free parameters. In this work,
we set t ¼ 10N and qi ¼ ki for i ¼ 1; 2; . . . ; N .

� Edge Betweenness (EB). It is defined as

EBij ¼
X

s;t2V ;s6¼t

n
ði;jÞ
st

gst
; (16)

where gst is the number of shortest paths between
nodes s and t, and n

ði;jÞ
st is the number of shortest

paths between nodes s and t that pass through the
edge ði; jÞ [51].

In network science, node centrality is often used to iden-
tify the important nodes [63], e.g., finding the essential peo-
ple in social network, or key spreaders in epidemics. In
order to investigate the importance of links, here, we trans-
form the original unweighted network G ¼ ðV;EÞ to line
graph LðGÞ ¼ ðE;DÞ [48], then utilize the node centrality in
line graph to define the importance of links in original
graph. In this representation, the node in the line graph is
the link in the original graph, and two nodes have a connec-
tion between them if the corresponding links share the
same terminal node in the original graph. As shown in
Fig. 1, we transform the links ði; jÞ, ðj; lÞ and ðj;mÞ in the
original graph to nodes a, b and c in the line graph. Nodes a
and b are connected since the links ði; jÞ and ðj; lÞ have the
same terminal node j, so are the connections between a, b
and c.

Based on this transformation, we define the line graph
features by node centrality indices in line graph, and then
use them to capture the importance of links in the original
graph directly.

3.2 Line Graph

� Degree Centrality (DC). It is defined as

DCi ¼ ki
N � 1

; (17)
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where ki is the degree of node i and N is the total
number of nodes in the line graph [64].

� Closeness Centrality (CC). It is defined as

CCi ¼ N
PN

j¼1 dij
; (18)

where dij denotes the shortest path length between
nodes i and j in the line graph. The shorter the dis-
tances between node i and the rest nodes are, the
more central the node i is, and thus the larger CCi

index is [65].
� Betweenness Centrality (BC). It is defined as

BCi ¼
X

s6¼i 6¼t

ni
st

gst
; (19)

where gst is the total number of shortest paths
between nodes s and t in the line graph, and ni

st rep-
resents the number of shortest paths between nodes
s and t that pass through node i [66].

� Eigenvector Centrality (EC). Eigenvector Centrality
is also known as eigencentrality [67]. It is defined as

ECi ¼ a
XN

j¼1

aijECj; (20)

where aij is the element of the adjacency matrix of
the line graph, i.e., aij ¼ 1 if nodes i and j are con-
nected and aij ¼ 0 otherwise, and a should be less
than the reciprocal of maximum eigenvalue of the
adjacency matrix.

� PageRank (PR). PageRank is a popular way of
measuring the importance of website pages [15].
The underlying assumption is that more important
webpages tend to receive more links from other
webpages. Its iterative formula is defined as

PRiðtÞ ¼ ð1� cÞ
XN

j¼1

aji
PRjðt� 1Þ

kj
þ c

N
; (21)

where c is a free parameter between zero and one. In
this study, we set c ¼ 0:15.

� Clustering Coefficient (C). In this case, we consider
the local clustering coefficient. It can be defined as [9]

Ci ¼ 2Li

kiðki � 1Þ ; (22)

where Li is the number of links between the ki neigh-
bors of node i.

� H-index (H). H-index is a popular metric which is
used to measure both the productivity and citation
impact of a scholar or scientist [68]. Recently, L€u
et al. [69] extended this concept to networks, i.e.,
assuming node i to be a scholar and its neighbors
to be the papers of node i, and a neighbor’s degree to
be the citations of each paper. Sorting the degree of
node i’s neighbor by decreasing order, the H-index
can be calculated as following:

Hi ¼ max
j2GðiÞ

minðkj; jÞ: (23)

� Coreness (CO). The coreness is defined based on k-
core. The k-core of a network is defined as the maxi-
mal subnetwork where every node in the subnet-
work has at least degree k [70], [71], and if a node
belongs to k-core but not ðkþ 1Þ-core, then it has
coreness k [72].

4 EXPERIMENTS AND RESULTS

4.1 Data Description

In this study, we use the following six weighted networks as
benchmarks to test link weight prediction methods.

� Celegans is a neural network of the nematode worm
C. elegans, where nodes represent neurons and links
stand for synaptic contacts, and the weight of a link
is the number of synapses between two neurons [9].

� USAir is a network of US air transportation, where
nodes and links represent airports and flights
between pairwise airports, respectively. The weight
of a link denotes the frequency of flights between the
corresponding airports [73].

� Lesmis is a network of characters in Victor Hugo’s
famous novel Les Miserables. The nodes are the
characters and two nodes are connected if the corre-
sponding characters co-appear in the same chapter
of the book. The weight of a link indicates the fre-
quency of such co-appearance [74].

� NetScience is a network for scientist collaborations in
the area of network science. The nodes and links rep-
resent scientists and co-author relationships, respec-
tively. The weight of a link represents the number of
papers that the corresponding two scientists co-auth-
ored [1], [2].

� Geom is also a collaboration network, but in the area
of computational geometry [73].

� CatCortex is a brain network of cat, where nodes and
links represent cortical regions and connections
between them, the weight of a link denotes the densi-
ties of the connection [3].

Note that here we mainly focus on undirected networks,
and thus we only extract the node, link, and weight infor-
mation but ignore link direction. The basic topological
features of the above six networks are shown in Table 1.
In order to compare the results across different networks,
all link weights are normalized to the interval ½0; 1� using

w� ¼ e�
1
w; (24)

Fig. 1. A schematic diagram for the transformation from original graph to
line graph, where the edges (i, j), (j, l) and (j, m) in original graph are
transformed to nodes a, b and c in line graph, respectively.
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where w and w� denote the original and normalized
weights, respectively [45].

4.2 Methods and Results

In this paper, we adopt several supervised learning algo-
rithms such as Random Forest (RF) [75], Gradient Boosting
Decision Tree (GBDT) [76], and Support Vector Machine [77]
to make a crosswise comparison. To assess the prediction
accuracy of our method, empirical experiments are con-
ducted on the above six real-world networks. It should be
noted that this study only focuses on link weight predic-
tion. As part of the experiment, for each network, we
randomly split its link weights into a training set WT

and a test set WV , which contain 90 and 10 percent of the
link weights, respectively, satisfying WT [WV ¼ W and
WT \WV ¼ ;. Then, we treat all the 22 features men-
tioned in Section 3 as the input. By adopting RF, GBDT
and SVM, we establish the models based on the training
set, and then use them to predict the link weights in the
test set, respectively. All the models are generated by R
packages: randomForest, gbm and e1071. More specifically,
in RF, we set ntree = 3,000; in GBDT, we set the n.trees =
3,000, shrinkage = 0.001 and interaction.depth = 2; in SVM,
we choose the radial kernel and use grid search to find
the suboptimal parameters, the values of gamma and cost
are searched in the set [0.001, 0.01, 0.1, 1, 10, 100].

Comparing the weights estimated by the model and the
actual ones in the test set, we calculate the Pearson Correla-
tion Coefficient and Root Mean Squared Error. Repeating the
process 30 times, we obtain the average PCC and RMSE,
as shown in Tables 2 and 3, respectively. In our experi-
ments, we also repeat the experiment for different times,
ranging from 10 to 50, and find the corresponding results
are quite similar.

We also compare our link weight prediction methods
with the relatively new methods proposed in Ref. [44],
Ref. [45] and Ref. [46]. In Ref. [44], Aicher et al. developed a
weighted stochastic block model, which can be applied to
infer both the existence and weights of links. Since we focus
on link weight prediction, we choose pWSBM as one of our
baselines. More specifically, we set 4 blocks and model the
link weights with the normal distribution and exponential
distribution, respectively. In Ref. [45], Zhao et al. proposed
a generalize similarity indices based on reliable routes
called rWCN, rWAA and rWRA. In Ref. [46], Zhu et al. pro-
posed another method based on neighbor set. We treat all of
them as the baseline methods. It should be noted that, in
Zhao et al.’s and Zhu et al.’s work, they treated the link
weight prediction as two different problems: the link pre-
diction as a classification problem and the weight prediction
as a regression problem by treating weights as link-exis-
tence probabilities. Most of those methods only used one or
two local properties. In this work, however, we take link
weight prediction as a regression problem using both origi-
nal graph and line graph features. Furthermore, we also
tried the state-of-the-art methods, i.e., DeepWalk [78] and
node2vec [79], to automatically generate the feature vectors
for nodes and links, and then use RF to realize link weight
prediction. The dimension of embedding vectors achieved
by node2vec is also set to 22, equal to the number of features
in our models. Then the link representation can be acquired
by hadamard operator [79]. In our experiments, the sam-
pling parameter p is fixed to 1 and the optimal value of q is
achieved through grid search from [0.125, 0.25, 0.5, 1, 2, 4,
8]. It should be noted that, the DeepWalk can be viewed as

TABLE 1
Basic Topological Features of the Six Networks

Celegans USAir Lesmis NetScience Geom CatCortex

jV j 297 332 77 1,461 6,158 65
jEj 2,148 2,126 254 2,742 11,898 730
hki 14.465 12.807 6.597 3.754 3.864 22.46
C 0.308 0.749 0.736 0.878 0.728 0.667
hdi 2.455 2.738 2.641 5.823 5.313 1.699
r �0.163 �0.208 �0.165 0.462 0.243 �0.0283

jV j and jEj are the numbers of nodes and edges, respectively. hki is the average
degree. C is the clustering coefficient. hdi is the average distance and r denotes
the assortativity coefficient.

TABLE 2
Prediction Accuracy under the Metric of PCC by Adopting Different Methods on Different Dataset, Using All 22 Features

Dataset pWSBM rWCN rWAA rWRA Zhu et al. node2vec+RF RF GBDT SVM

Celegans 0.287 0.248 0.281 0.303 0.390 0.459 0.502 0.456 0.447
USAir 0.592 0.318 0.323 0.304 0.575 0.777 0.643 0.530 0.631
Lesmis 0.451 0.596 0.637 0.658 0.582 0.528 0.720 0.691 0.680
NetScience 0.539 0.381 0.478 0.493 0.293 0.639 0.805 0.776 0.770
Geom 0.491 0.463 0.488 0.394 0.494 0.564 0.605 0.551 0.512
CatCortex 0.405 0.331 0.362 0.409 0.229 0.476 0.473 0.470 0.486

TABLE 3
Prediction Accuracy under the Metric of RMSE by Adopting Different Methods on Different Dataset, Using All 22 Features

Dataset pWSBM rWCN rWAA rWRA Zhu et al. node2vec+RF RF GBDT SVM

Celegans 0.209 0.429 0.443 0.478 0.204 0.190 0.184 0.189 0.192
USAir 0.00540 0.00587 0.00588 0.00593 0.00638 0.00406 0.00461 0.00499 0.00535
Lesmis 0.183 0.292 0.275 0.270 0.202 0.171 0.140 0.143 0.157
NetScience 0.121 0.157 0.142 0.138 0.169 0.114 0.0875 0.0929 0.0952
Geom 0.143 0.388 0.344 0.332 0.255 0.137 0.131 0.137 0.147
CatCortex 0.159 0.244 0.237 0.233 0.168 0.148 0.147 0.149 0.149
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the special case of node2vec when the sampling parameters
set to be p ¼ q ¼ 1.

As shown in Tables 2 and 3, we obtain larger PCC but
smaller RMSE by adopting any supervised learning method
than the baseline methods on most datasets, indicating that
supervised learning methods indeed perform much better
than the others using any metric. For PCC, all the p-values
are smaller than 0.0001, suggesting the statistically signifi-
cant positive linear correlation between the weights esti-
mated by the supervised learning methods and the real
ones. By comparison, the decision tree based algorithms,
i.e., RF and GBDT, perform better than SVM. Moreover, we
find our features perform better than the features automati-
cally generated by node2vec in most cases, by using the same
supervised learning algorithm RF.

It is known that the original graph features, such as simi-
larity indices, are widely used in link prediction. However,
for link weight prediction, the weights in many networks
are not only correlated with the similarity, e.g., when the
frequency is viewed as the link weight, thus the similarity

as one indicator may not represent all the information about
link weight. Furthermore, most original graph features are
calculated by pairs of nodes, and ignore the information of
link itself. In our work, we extract the centrality indices in
line graph, which can be directly viewed as link informa-
tion. In Tables 4 and 5 we compare the RMSE or PCC results
of RF algorithm by using original graph features, line graph
features and both, respectively. We find that the results
using both groups of features together can indeed improve
the performances, in terms of larger PCC and smaller
RMSE. That is, the line graph features are complementary
to original graph features in link weight prediction.

In order to address the robustness of supervised learning
methods on the size of training set, we obtain the prediction
accuracies for the link weight prediction using various sizes
of training sets (from 10 to 90 percent with 20 percent inter-
val). For each size, we randomly divide the training set and
test set for 30 times and record the average result. The
results are shown in Figs. 2 and 3 for the metrics of PCC
and RMSE, respectively. We find that the results obtained

TABLE 4
Prediction Accuracy under the Metric of PCC by Using

Different Groups of Features

Dataset RF
RF

(original graph)
RF

(line graph)

Celegans 0.502 (+7.73%) 0.466 0.459
USAir 0.643 (+4.89%) 0.613 0.469
Lesmis 0.720 (+2.13%) 0.705 0.608
NetScience 0.805 (+1.90%) 0.790 0.741
Geom 0.605 (+4.13%) 0.581 0.530
CatCortex 0.473 (+4.67%) 0.452 0.407

TABLE 5
Prediction Accuracy under the Metric of RMSE by Using

Different Groups of Features

Dataset RF
RF

(original graph)
RF

(line graph)

Celegans 0.184 (+2.13%) 0.188 0.189
USAir 0.00461 (+4.16%) 0.00481 0.00555
Lesmis 0.140 (+4.76%) 0.147 0.158
NetScience 0.0875 (+4.58%) 0.0917 0.0967
Geom 0.131 (+2.24%) 0.134 0.139
CatCortex 0.147 (+2.65%) 0.151 0.154

Fig. 2. The metric of PCC as functions of the size of training set (represented by the fraction of samples in the training set), for different methods.
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by our method using RF are better than those obtained by
the baseline methods in most cases, indicating the robust-
ness of our method on the size of training set.

Besides, we also investigate the feature importance based
on the Random Forest mean decreasing accuracy and mean
decreasing impurity, as shown in Tables 6 and 7, respec-
tively, with all the values normalized. We underline the top
3 features in each dataset. Relatively speaking, RA is the
most important feature in our study, which is consistent

with the previous work [30], while in line graph, we cannot
find a dominant feature that behaves better than the others
in most cases, i.e., BC, EC, PR have their advantages in dif-
ferent networks, respectively.

4.3 Time Complexity

Generally, calculating the node centrality is time con-
suming. In this part, we study the time complexity of
feature indices in our methods. Since our centrality

Fig. 3. The metric of RMSE as functions of the size of training set (represented by the fraction of samples in the training set), for different methods.

TABLE 6
Feature Importance Determined by the Random Forest

Normalized Mean Decreasing Accuracy Measure

Metrics Celegans USAir Lesmis NetScience Geom CatCortex

CN 0.224 0.443 0.383 0.384 0.199 0.329
SA 0.546 0.389 0.348 0.413 0.244 0.937
JAC 0.471 0.312 0.305 0.387 0.230 0.776
HPI 0.701 0.611 0.332 0.461 0.271 1.000
HDI 0.456 0.378 0.330 0.319 0.225 0.739
SI 0.460 0.335 0.301 0.320 0.208 0.797
LHN 0.546 0.432 0.343 0.287 0.238 0.825
AA 0.583 0.518 0.593 0.472 0.367 0.558
RA 1.000 0.714 1.000 1.000 1.000 0.977
PA 0.568 0.471 0.248 0.290 0.233 0.573
FM 0.672 0.369 0.406 0.385 0.246 0.574
LP 0.398 0.768 0.230 0.229 0.085 0.459
LRW 0.684 0.352 0.225 0.446 0.285 0.665
EB 0.556 0.772 0.361 0.285 0.301 0.581

DC 0.634 0.269 0.184 0.209 0.162 0.474
CC 0.604 0.505 0.298 0.496 0.281 0.921
BC 0.660 1.000 0.205 0.327 0.201 0.895
EC 0.670 0.276 0.330 0.352 0.298 0.769
PR 0.688 0.264 0.298 0.549 0.384 0.544
C 0.365 0.236 0.363 0.284 0.297 0.480
H 0.651 0.325 0.276 0.301 0.145 0.375
CO 0.468 0.265 0.285 0.353 0.188 0.406

TABLE 7
Feature Importance Determined by the Random Forest

Normalized Mean Decreasing Impurity Measure

Metrics Celegans USAir Lesmis NetScience Geom CatCortex

CN 0.091 0.128 0.226 0.210 0.127 0.132
SA 0.498 0.149 0.147 0.368 0.183 1.000
JAC 0.360 0.144 0.127 0.331 0.153 0.669
HPI 0.551 0.265 0.142 0.421 0.210 0.987
HDI 0.358 0.152 0.106 0.322 0.143 0.722
SI 0.336 0.144 0.110 0.319 0.140 0.688
LHN 0.487 0.208 0.131 0.365 0.142 0.712
AA 0.525 0.300 0.450 0.254 0.353 0.428
RA 0.932 0.359 1.000 1.000 1.000 0.843
PA 0.462 0.153 0.081 0.077 0.516 0.338
FM 0.598 0.239 0.205 0.106 0.294 0.458
LP 0.455 0.319 0.120 0.060 0.137 0.821
LRW 0.834 0.143 0.115 0.200 0.358 0.566
EB 0.689 1.000 0.128 0.100 0.297 0.648

DC 0.647 0.107 0.053 0.057 0.277 0.228
CC 0.756 0.168 0.107 0.182 0.433 0.599
BC 0.694 0.493 0.114 0.118 0.281 0.611
EC 1.000 0.181 0.135 0.083 0.507 0.539
PR 0.805 0.148 0.109 0.290 0.350 0.434
C 0.674 0.167 0.185 0.082 0.193 0.573
H 0.695 0.086 0.066 0.054 0.152 0.227
CO 0.445 0.089 0.058 0.058 0.134 0.205
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indices are calculated in line graph, we should calculate
the basic characteristics in line graph first. Assuming
that the original graph has jV j nodes and jEj edges, then
the number of nodes in line graph is equal to jEj and the

number of edges is equal to
PjV j

i¼1 kið Þ2 � jEj [48]. Thus we

can easily transform the time complexity of original graph
to line graph, e.g., the time complexity of degree centrality
in original graph is OðjV jÞ, then its time complexity in line
graph is OðjEjÞ. More time complexity of centrality indices
and similarity indices are shown in Table 8, where hki
denotes average degree in original graph and S denotes
the steps of iterations of corresponding algorithm. More-
over, for unsupervised methods in our work, the time com-
plexity are almost the same as the feature extraction. For
supervised methods,the time complexity is mainly deter-
mined by the training part, e.g., the time complexity for
SVM is OðjEj3Þ [80], for RF and GBDT is OðTF jEjlog jEjÞ,
where T denotes the number of trees, F denotes the num-
ber of attributes [81].

5 APPLICATION ON YELP LAYERED NETWORK

Although many real-world systems can be roughly
described by single-layer networks, some of them contain
different kinds of nodes and links, and thus the concepts
such as network of networks and layered network emerge
and attract lots of attentions from network researchers [19],
[42], [82], [83], [84]. A layered network can be used to
describe a system with different kinds of relationships.
For example, in Open Source Software projects, there are
two kinds of relationships between developers: the social
relationship by emailing each other and the collaboration
relationship by working together [42].

Here, we focus on Yelp network. Yelp is a popular
website for reviewing restaurants, stores and so on. Our
study is based on the recently released Yelp Dataset
Challenge.1 The dataset contains information about user
ID, reviews, business attributes, and so on. Yelp network
is a layered network because it contains different kinds
of relationships. By using the information about user ID,
friends and review history on restaurants, we can con-
struct a network of two layers. In the first layer, two
users are connected if they are friends, namely social
network. In the second layer, two users are connected if
they reviewed the restaurants in at least one same clus-
ter, namely co-foraging network. Here the cluster of res-
taurants is based on the restaurant locations and is
realized by using Density-Based Spatial Clustering of
Application with Noise (DBSCAN) method [85]. The link
in the co-foraging network has a weight, defined as the
number of clusters of restaurants that the corresponding
two users have ever reviewed. In this layered network,
we only focus on the those active users with more
than 50 reviews, and finally the Yelp layered network
totally contains 2121 nodes and 35520 social links. Since
we want to evaluate the effect of social links on the co-
foraging behavior of the pairwise users, only the pair-
wise users connected by social links are considered here,
while those pairs of users with no social link between
them are ignored.

Based on this layered network, we extract the 22 features
for each link in the social network, take them as the input,
and treat the corresponding link weight in the co-foraging
network as the output. Then, we divide this dataset into
training set and test set, containing 90 and 10 percent sam-
ples, respectively. Due to the better performance of RF in
the previous experiments, we use them to establish the pre-
diction model for the Yelp layered network to realize cross-
layer link weight prediction. The comparisons of PCC and
RMSE are shown in Table 9, where we can see that RF using
our handcrafted features is comparable with that using the
features automatically generated by node2vec, both of which
performers much better than the unsupervised baseline
methods, and this result is quite stable for various size of
training set, as shown in Fig. 4. These imply that the online
social interactions can indeed be used to predict the offline
co-foraging behavior to certain extent, by using supervised
learning methods.

6 CONCLUSION

In this paper, we adopted supervised learning methods,
such as RF, GBDT, and SVM, by utilizing the features
including similarity indices in original graph and centrality
indices in line graph to realize the link weight prediction in
various networks. Specifically, we also apply them in Yelp
layered network to realize cross-layer link weight predic-
tion. The results showed that, our supervised learning
methods can get much better prediction performance, in
terms of larger PCC and smaller RMSE, than baseline meth-
ods, and such superiority is quite robust for various sizes of
training sets. Moreover, we also find that the RA plays a

TABLE 8
The Computation Complexity of Similarity and Centrality
Indices in Original Graph and Line Graph, Respectively

Metrics Original graph Line graph

CN OðjV jÞ -
SA OðjV jÞ -
JAC OðjV jÞ -
HPI OðjV jÞ -
HDI OðjV jÞ -
SI OðjV jÞ -
LHN OðjV jÞ -
AA OðjV jÞ -
RA OðjV jÞ -
PA OðjV jÞ -
FM � OðjV jhkiÞ -
LP � OðjV jhkiÞ -
LRW OðjV jSÞ -
EB OðjV j3Þ -

DC OðjV jÞ OðjEjÞ
CC OðjV j3Þ OðjEj3Þ
BC OðjV j3Þ OðjEj3Þ
EC OðjV j2Þ OðjEj2Þ
PR OðjEjSÞ � OððjV jhki2 � jEjÞSÞ
C � OðjV jhkiÞ � OðjEjhkiÞ
H � OðjV jhkiÞ � OðjEjhkiÞ
CO OðjEjÞ � OðjV jhki2 � jEjÞ

1. https://www.yelp.com/dataset_challenge
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more important role in the weight prediction, which is con-
sistent with Zhou et al.’s work [30].

The study on Yelp layered network suggests that our
methods can also be used to predict the offline co-foraging
behavior of users just based on their online social interac-
tions, which may open a new direction for link prediction
algorithms, and meanwhile provide insights to design bet-
ter restaurant recommendation system. Our studies high-
light the fact that supervised learning methods, assistant
with appropriate network properties, can achieve great
success in link weight prediction. It should be noted that
the current algorithms, such as node2vec, can only generate
the feature vectors for nodes, not for links directly. It is nat-
urally to believe that, in this way, some important link infor-
mation could be ignored by using this method. Therefore,
we are trying to create a new algorithm, namely link2vec,
based on our line graph to automatically generate the fea-
ture vectors for links, and then use supervised learning
methods to realize link weight prediction, which we think
can further improve the link weight prediction performance
and belongs to our future work. Furthermore, the link
weight prediction is similar to the link prediction, and thus
has two meanings: one is to uncover the missing weight of
links, another is to predict the future weight of interactions.
In our present work, we mainly focus on the first meaning,
but time is certainly a very important factor in the real-
world systems and thus should be addressed. Therefore, in

our future work, we will take the temporal network into
consideration, collect more temporal weighted networks,
and further abstract significant temporal features to predict
the temporal weight of links.
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