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Abstract— Measuring the influence of scientists and their
activities on science and society is important and indeed essential
for many studies. Despite the substantial efforts devoted to
exploring the influence’s measures and patterns of an individual
scientific enterprise, it remains unclear how to quantify the
mutual impact of multiple scientific activities. This work quanti-
fies the relationship between the scientists’ interactive activities
and their influences with different patterns in the AMiner
dataset. Specifically, inflation treatment and field normalization
are introduced to process the big data of paper citations as the
scientist’s influence, and then the evolution of the influence is
investigated for scientific activities in the citation and cooperation
patterns through the Hawkes process. The results show that
elite scientists have higher individual and interaction influences
than ordinary scientists in all patterns found in the study, with
permutation tests verifying the significance of the new findings.
Moreover, the study compares the patterns found in two largest
disciplines, i.e., STEM and Humanities, revealing the higher value
of individual influence in STEM than in Humanities. Further-
more, it is found that the opposite trend of STEM and Humanities
in the cooperation pattern suggests different cooperation habits
of scientists in different disciplines. Overall, this investigation
provides a feasible approach to addressing the scientific influence
issue and deepening the quantitative understanding of the mutual
influence of multiple scientific activities in science and society.

Index Terms— Citation pattern, Hawkes process, interaction
influence, science of science, scientific activity.

I. INTRODUCTION

SCIENTIFIC activity, such as production [1], citation [2],
[3], and cooperation [4], [5], is key to the development

of modern science. However, the ever-increasing production
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makes science activities more complex and overwhelming,
becoming harder and harder to analyze. Fortunately, in the
last decade, the ongoing process of datafication has been
continuously turning most scientific activities into comput-
erized data. Notably, these digitized data are collected and
analyzed to support related works associated with the “science
of science” [6], [7], [8]. In particular, one of the current
foci is the influence of scientific activities [4], [9], [10].
Despite the present good understanding about the impact of
an individual scientific enterprise (i.e., scientists, journals,
and institutions) on different metrics [11], [12], [13], [14],
it remains unclear how to quantify the integrating impact of
scientific activities among multiple scientists, e.g., citation and
cooperation.

Uncovering the mechanisms of the interaction activities
among scientists and their evolution is critical for under-
standing and evaluating the influence of scientists’ activities.
However, scientific influence is a complex concept that is
difficult to quantify. One intuitive approach is to evaluate
such influence using citation [15], [16] and some relevant
metrics (e.g., H-index [11], reputation index [17], and journal
impact factor [18]). In particular, the citation is specifically
recorded across different disciplines. Unfortunately, with the
increase in knowledge scale and complexity, the citation
distribution exhibits a high degree of heterogeneity [19],
[20], [21], affecting citation-related measurement methods’
effectiveness. For example, the citation of a scientist with a
big name continuously grows with time, showing the power-
ful Matthew effect [22], [23]. Substantial efforts have been
devoted to extracting such influence from the complex scien-
tific environment, e.g., distinguishing personal impacts from
teamwork [24] and evaluating the influence from the visibility
of scientists [25] or papers [26]. Furthermore, to offer a deep
quantitative understanding of the self-organizing behaviors
of scientists and unveil the influence caused by scientific
activities, more and more investigations have been conducted
on the behavioral patterns of scientists [27], [28], [29]. Among
these scientific patterns, citing and collaborating are the two
most basic scientific activities. Recent studies found that
citing higher impact papers indeed has a positive feedback
[30]. Moreover, cooperation will fully mobilize decentralized
knowledge, allowing each scientist in the team to finish their
work [31], enabling researchers in different fields to share
responsibilities and risks, gain complementary knowledge,
accumulate academic capital, and accelerate the exchange of
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knowledge and experience, thus accelerating the output of
innovative research [32], [33]. For example, recent research
shows that cooperating with top scientists has a competitive
advantage in one’s future career [34].

Although these studies offer clear patterns for scientific
activities, the influence caused by such activities is still
a challenge to understand and quantify, especially for the
effect of mutual activities. Therefore, in this study, we aim
to systematically quantify the influence caused by mutual
scientific activities from a new perspective. Specifically, using
the Hawkes process, our work quantifies the influence of
mutual activities in different behavioral patterns. The Hawkes
process [35], [36] is a kind of self-exciting point process,
which is often used to quantify the impact between events at
different time. Because the Hawkes process reveals the weak
causal relationship between time and events, it has been widely
used in different disciplines, for example, in modeling earth-
quakes and their aftershocks [37], and estimating the market
risk [38]. Recently, this method has been expanded to analyze
the influence of different users on social networks [39], [40],
[41], [42].

With the above-mentioned studies, the main contributions
of this work are summarized as follows.

1) Our work examines a total of 4.9 million papers over the
past 20 years and introduces the inflation treatment and
field normalization to avoid heterogeneity in calculating
their contribution.

2) We quantify the influence of mutual scientific activities
using the Hawkes process and investigate such influ-
ences in citation and cooperation patterns. Furthermore,
we perform permutation tests to verify the significance
of our results.

3) We reveal and analyze the disciplinary differences in
citation and cooperation patterns.

The rest of this article is organized as follows. Section II
introduces the dataset and preparation. Section III describes
the inflation treatment, field normalization, and the Hawkes
process. Section IV demonstrates the influence effects in
the aforementioned two patterns. Section V comprises the
differences in STEM and Humanities. Finally, Section VI
concludes the investigation with some discussions.

II. DATA DESCRIPTION AND PREPARATION

In our study, we use the dataset from AMiner.1 As the
release dataset version continues to update, it has become more
popular and used for analyzing the information spread [43],
studying the scientific influence [44], [45], [46], building
recommendations in academic networks [47], [48], research-
ing citation and cooperation networks [49], [50], [51], [52],
developing the prediction in academic networks [53], [54], and
analyzing in different fields [55], [56], [57], [58]. This work
adopts the twelfth version of the dataset (V12), which was last
updated in 2020 and extracted from database systems and logic
programming (DBLP), Association for Computing Machinery

1https://www.aminer.cn/citation

TABLE I
DATA INFORMATION

(ACM), and Microsoft Academic Graph (MAG) [59]. The
dataset includes nearly 4.9 million papers from 113 887 disci-
plinary fields. Each data contain the paper number, paper title,
scientists’ information, publication year, publication location,
citation relationship, and field information. The field infor-
mation includes field name and fields of research weight w

(called “fields of study” in [60]), and each paper is assigned
to at least two fields.

To quantify the continuous inference among scientists,
we exclude the scientists who have not published more than
two papers in three consecutive years. Furthermore, since
the number of citations received by a paper will reach its
maximum three years after publication and the citations can be
decline after three years [61], [62]. In this work, we design the
accumulation years of citations for different years. Specifically,
we demonstrate the individual influence µm and interaction
influence αmn under different cumulative years of citations,
i.e., three, five, and seven years. It should be noted that we
focus on papers from 2000 to 2018. Thus, papers published
in 2018 lack the accumulation of citations over periods of
five and seven years, while those published in 2015 lack
the accumulation of citations over seven years. There are
totally 3 054 175 papers coauthored by 2 721 481 scientists.
Table I shows the detailed information of the datasets, where
cooperation means coauthorship.

III. METHOD

In this work, we chose the number of citations to quantify
the scientists’ contributions and influence. However, citations
and papers have increased exponentially at different growth
rates [63], which leads to inflation problem and causes the
consequence that citations cannot be directly compared in
different periods. Furthermore, papers in different disciplines
have large variations in the number of citations [20]. These
issues make it impossible to directly compare the numbers
of citations across disciplines for different periods. To solve
this problem, we introduce citation inflation treatment and
field normalization, which are necessary before calculating
scientists’ contributions. Moreover, we attribute each paper to
the first scientist to avoid double-counting and also to simplify
the calculation.

A. Inflation Treatment

Because the inflation and research field have been proven to
be uncorrelated, we directly adopt a method from [64] without
considering the research fields. Specifically, we assume the
increment

1 = ln
(
N(t)

)
− ln

(
N(0)

)
= I × t (1)
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Fig. 1. Relationship between time and the increment 1. The orange dot
represents the increment of publication, and the blue solid line represents the
fit result with the linear regression model. The citation inflation coefficient I
is 0.128.

where N(t) is the total number of papers published in t years,
and N(0) is the number of papers published in the starting
year. The inflation coefficient I can be fit by the ordinary
least squares (OLS). Then, the adjusted or the actual number
of citations, C(t), can be calculated as C(t) = C(t)/(I + 1),
where C(t) is the observed citation number in year t + 1.

As shown in Fig. 1, the citation inflation coefficient I is
0.128 from 2000 to 2018. In this work, we set the base year
to 2000 and normalize the number of citations obtained in the
other years to the actual number of citations in 2000.

B. Field Normalization

To avoid the bias problem introduced by field variation, field
normalization is needed. In this work, we extend the method
developed in [20], to introduce a weight of the paper field
given by the dataset used. To avoid amplifying the contribution
of fields with low average citations, this work uses the number
of publications N j to normalize. Specifically, we define the
citation contribution p of paper by

p =

n∑
j=1

(∑2018
t=2000 C(t)

)
∗ w j

N j
. (2)

Here, n is the total number of fields covered by paper i , j
is one of the fields ( j = 1, 2, 3, . . . , n), and w j is the
weight of the j th field, which is called “fields of study” and
directly provided by the dataset; the field to which the paper
belongs and the field of research with weight w are given
by the dataset; C(t) is the number of citations after inflation
treatment in year t ; and N j is the total number of papers
published in the j th field. Then, the contribution of scientist
A who has m publications can be calculated as follows:

PA =

m∑
i=1

pi (3)

where m is the total number of papers published by scientist A.

After calculation, we divide the scientists by ranking their
contributions in descending order, where the top 10% are clas-
sified as elite scientists and the last 90% as ordinary scientists.
Finally, we found that there are 235 537 elite scientists and
2 119 836 ordinary scientists. It should be noted that although
AMiner inherits the lowest level field of MAG, this work
performs field normalization for all the fields involved. Thus,
the normalization results are not affected by the field level.

C. Hawkes Process

Our goal in this work is to quantify the mutual influ-
ence of multiple scientists’ activities in an academic field.
Traditional works focus on analyzing individual influence of
scientists [63], [65], [66], ignoring the quantification of inter-
actions among multiple scientists. However, quantifying the
influence among scientists is not easy because the combined
multisources’ nature of the influence makes it challenging to
determine the influence’s origin and intensity.

Fortunately, the Hawkes process as a particular point pro-
cess can explain the effects of such influence mathematically.
A point process is a stochastic process that uses a collec-
tion of points to represent discrete events in a mathematical
space [67], [68]. As a particular class of point processes,
the Hawkes process was first proposed in 1971, which con-
siders that the occurrence probability of the current event
is dependent on the occurrence of the previous events [35],
[36]. In particular, the Hawkes process treats the dependence
intensity between events as a decay function in exponential
form. Thus, the conditional intensity function for a Hawkes
process can be calculated as follows:

λ(t) = µ +

∑
ti <t

αe−β(t−ti ) (4)

where µ is the baseline intensity of the event, t is the current
time, ti is the time at which the previous event occurs before
time t , α is the excitation factor, and β is the decay rate. In this
formula, α and β establish the dependence of the current event
on the previous event.

In the academic network, the scientists’ self-citations can
be considered as a self-excitation process, where the sci-
entists’ accumulative citations can be used to quantify the
total influence [expressed as λ(t)], which includes individual
and historical influences. Specifically, the individual influence
is an intrinsic property of a scientist (e.g., creativity [69]),
and the historical influence is the excitation of the scientists’
historical events (e.g., the excitation of the scientists’ self-
citation history). For a scientist, the individual influence is
defined as µ, which is independent of the scientists’ historical
influence, and the historical influence is the excitation of
self-citations at time ti (ti < t) as α, which decreases with
the decay rate β.

However, a more common phenomenon in academic fields
is that scientists are influenced by other scientists, such as
collaborators, which can be considered as cross-excitation. For
example, a recent report shows that teamwork has a more
substantial influence than solo work [24]. The importance
of the collaborators’ interactions promotes our consideration
of the cross-excitation process in the Hawkes process, i.e.,
a multivariate Hawkes process. The multivariate Hawkes
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process is more suitable for quantifying the influence of
scientists’ interactions. Compared with the univariate Hawkes
process, the multivariate Hawkes process not only includes
self-excitation but also considers cross-excitation. Specifically,
the multivariate Hawkes process is written as follows:

λm(t) = µm +

N∑
n=1

∑
tn
i <t

αmne−βmn(t−tn
i ) (5)

where N is the total number of events in n-dimension, µm is
the baseline intensity of event m, t is the current time, and
tn
i is the time that the nth event occurs before time t ; the

excitation factor αmn describes the excitation of the nth event
on the event m, and βmn is the decay rate that explains the
decaying process.

In academic fields, compared with self-excitation, the dif-
ference in the cross-excitation is the composition of the total
influence. The cross-excitation considers the total influence
including individual influence and interaction influence. The
interaction influence is the excitation of other scientists’
activities (e.g., the excitation of other scientists’ citations
or cooperation). Specifically, for a scientist, the interaction
influence of being cited or cooperating with other scientists
at time ti (ti < t) can be expressed as αmn , decreasing with
the decay rate βmn . For example, at time t , one can observe
that scientist c receives two citations at times t1 and t2 from
scientists a and b, respectively. The conditional intensity
function of scientist c, then, can be written as follows:

λc(t) = µc + αcae−βca(t−t1) + αcbe−βcb(t−t2) (6)

where µc is the baseline intensity of scientist c, λc(t) is the
accumulative citation of scientist c (ending at time t), αca is
the excitation factor that describes the interaction influence
from scientist a citing scientist c, and βca is the decay rate.

IV. INFLUENCE EFFECT

In this work, β is the decay rate of the excitation of inter-
action, and we adopt the Tree of Parzen Estimators approach
based on Bayesian hyperparameter optimization to fit β in
different patterns (the citation and cooperation patterns) [42],
[70], [71], [72], [73]. The value of β is 0.028 and 0.29 in
the citation and cooperation patterns, respectively, implying
that the half-life of excitation factor α is about 25 years
and 2 years. This means that the interaction influence among
scientists persists over an extended time. Thus, in the following
experiments, we set β = 0.028 and 0.29 in different patterns
to fit the baseline intensity µ and the interaction influence α

in different citation accumulation years. However, the trend
in individual influence across different citation accumulation
times is without significant differences. Thus, we focused on
the three-year citation accumulation year. We will also show
their evolution in different time windows.

A. Citation Pattern

To measure the interaction influence among different sci-
entists, we divide scientists into elite and ordinary scientists
by considering their contributions (Section II). One source of

Fig. 2. Evolution of individual influence (µ) in the citation pattern. The
orange line represents elite scientists and the blue line represents ordinary
scientists in (a) three, (b) five, and (c) seven accumulation citation years,
respectively.

the interaction influences in an academic field is the citing
activities among scientists. Thus, in the citation pattern, we use
the multivariate Hawkes process to quantify the evolution of
the interaction influence.

1) Individual Influence: For the multivariate Hawkes pro-
cess, µm is the baseline intensity of event m. In the citation
pattern, the baseline intensity µm is the individual influence
of scientist m, namely, the personal charisma of scientists.
Fig. 2 shows comparison of the baseline intensity µm of elite
and ordinary scientists. From the figure, one can observe an
ascending trend for both elite and ordinary scientists, which
implies that the scientists’ individual influence is steadily
improving in the citation pattern. Furthermore, comparing
Fig. 2(a) with Fig. 2(b), one can find that the individual
influence of elite scientists is more significant than that of
ordinary scientists.

2) Interaction Influence: In addition to the citations influ-
enced by the personal charisma of scientists, the mutual citing
activities among scientists can also bring new citations. In the
citation pattern, this interaction influence is represented by
αmn , which comes from the citing activities of scientist n,
i.e., citing scientist m’s papers. Fig. 3 shows comparison of
the interaction influence αmn of elite and ordinary scientists.
Similarly, one can find an ascending trend of interaction
influence αmn for both elite and ordinary scientists, suggesting
that the interaction influence among scientists is growing
steadily. Moreover, comparing Fig. 2 with Fig. 3, the value
of interaction influence αmn is more significant than the base-
line intensity µm , which implies that in the citation pattern,
compared with scientists’ charisma, mutual citation behavior
is more helpful to the scientists’ total influence. Furthermore,
from Fig. 3(a) and (b), one can see that these citations from
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Fig. 3. Evolution of interaction influence (α) in the citation pattern. The
orange line represents the interaction influence of elite scientists on (a) elite
scientists and (b) ordinary scientists, respectively. The blue line represents
the interaction influence of ordinary scientists on (c) elite scientists and
(d) ordinary scientists, respectively. Where dot, square, and triangle represent
three, five, and seven accumulation citation years, respectively.

the elite scientists strongly impact the target scientists, for both
elite and ordinary scientists. This seems due to the fact that
elite scientists receive more attention than ordinary scientists,
thereby indirectly increasing the attention of those papers cited
by elite scientists. Furthermore, comparing Fig. 3(a) and (c),
the influence of elite scientists citing elite scientists’ papers is
greater than that of ordinary scientists citing elite scientists’
papers. That is mainly because elite scientists gain greater
attention through their high visibility, and papers cited by
elite scientists also have advantages in receiving citations.
Comparing Fig. 3(c) and (d), the interaction influence of
ordinary scientists citing elite scientists’ papers is almost at
the same level as that of ordinary scientists citing ordinary
scientists’ papers, which implies the weak interaction influence
of ordinary scientists.

In general, in the citation pattern, the elite scientist plays
a more important role, which helps promote the influence of
other scientists by their influences.

B. Cooperation Pattern

Another common source of influence in academic fields is
the cooperative activities among scientists. We further inves-
tigate the impact of the cooperation pattern by focusing on
the cooperative activities between elite and ordinary scientists.
For simplicity, we attribute each paper to the first author and
consider the interaction influence as the influence of other
collaborators on the first author. Then, we examine whether
any detectable variation in scientists’ interaction influences
under the cooperation pattern exists.

1) Individual Influence: Same as the citation pattern, let
µm be the baseline intensity of scientist m. Fig. 4 shows
comparison of the baseline intensity µm of elite and ordinary

Fig. 4. Evolution of individual influence (µ) in the cooperation pattern. The
orange line represents elite scientists and the blue line represents ordinary
scientists, in (a) three, (b) five, and (c) seven accumulation citation years,
respectively.

Fig. 5. Evolution of interaction influence (α) in the cooperation pattern. The
orange line represents the interaction influence of elite scientists on (a) elite
scientists and (b) ordinary scientists, respectively. The blue line represents
the interaction influence of ordinary scientists on (c) elite scientists and
(d) ordinary scientists, respectively. Where dot, square, and triangle represent
three, five, and seven accumulation citation years, respectively.

scientists. We can observe a descending trend of individual
influence for both elite and ordinary scientists. However, since
the total influence λm(t) is growing over time, this declining
trend implies that cooperative activities may play an important
role in the cooperation pattern.

2) Interaction Influence: The interaction influence αmn in
the cooperation pattern comes from scientist n coauthored
with scientist m. Fig. 5 shows comparison of the interaction
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Fig. 6. Distribution of new cooperation pairs. The blue and orange boxes
represent the distributions of new cooperation pairs of elite and ordinary
scientists, respectively. The green dot represents the average number of new
cooperation pairs. The black line in boxes represents the median number of
new cooperation pairs.

influence αmn of elite and ordinary scientists. Interestingly,
the evolution of the interaction influence in the cooperation
patterns (Fig. 5) shows an opposite trend compared with
that in the citation pattern (Fig. 3). The decrease in the
influence of single pair of cooperation and the increase in the
total interaction influence may be caused by the number of
increasing cooperation times. Recent research has found that
too much new cooperation could be harmful [74], including the
high cost of forming new ties [75], new cooperation members’
adaption [76], and less trust and familiarity [77], which may
be the reason for the decreasing of interaction influence.

To understand the potential source that might reduce the
interaction influence αmn , we further investigate the new coop-
eration pairs of the scientists. Fig. 6 compared the distribution
of new cooperation, which increases steadily in each period,
for both elite and ordinary scientists. Comparing Fig. 5 with
Fig. 4, the interaction influence αmn is significantly larger
than the baseline intensity µm , implying that the scientists’
total influence depends more on cooperation. Furthermore,
from Fig. 5(a) and (b), one can see that cooperating with
elite scientists influences the target scientist greatly, for both
elite and ordinary scientists, suggesting the high impact of
the elite scientists. By comparing Fig. 5(a) and (c), it can be
seen that the interaction influence of elite scientists on elite
scientists is more significant than that of ordinary scientists
on elite scientists. This phenomenon may be caused by the
“star effect” [78] of elite scientists, e.g., the papers published
by elite scientists get more attention than that published by
ordinary scientists. Moreover, there is a “win–win” situation
in the cooperation among elite scientists, and the influence
which is generated is more significant than simply summing
their effects together. Comparing Fig. 5(c) and (d), one can
see that the interaction influence of ordinary scientists on elite
scientists is slightly greater than that of ordinary scientists on

Fig. 7. Simple illustration of the permutation test. The blue solid line
represents the original relationship and the red dotted line indicates the result
after permutation. The permutation keeps the occurrence time and the total
number of activities constant but destroys the original relationships between
papers and scientists.

ordinary scientists, implying that ordinary scientists’ participa-
tion in the cooperation provides limited interaction influence
on the other scientists.

In general, cooperative activities play an important role
in the cooperation pattern, which brings greater impact than
individuals do. However, too much new cooperation may
decrease the trend of interaction influence. Furthermore, elite
scientists can bring a greater impact on cooperation, and
ordinary scientists can benefit from cooperating with elite
scientists, which is consistent with the recent reports in the
literature on scientists’ cooperation [5].

C. Permutation Tests

To verify the significance of the excitation effects, we con-
duct permutation tests of citation and cooperation patterns.
Specifically, we randomly permute the association of activity
types (citations or cooperation by scientists) to generate a
null model. Fig. 7 demonstrates an example of possible
permutation. It should be noted that our procedure keeps the
occurrence time and the number of activities constant but
destroys the original event relationship. After that, we refit the
parameters of the multivariate Hawkes processes over the null
model and compare the differences in Hawkes process param-
eter values, as shown in Fig. 8. The comparison results show
that the ascending or descending trend in the original citation
and cooperation patterns are either significantly attenuated or
eliminated in the null model. Furthermore, several model lines
are below null model lines because the permutation breaks
the citation and cooperation relationship between scientists.
For example, the value of the null model is higher than the
model in Fig. 8(c) and (d) which may be because the citation
and cooperation relationship between ordinary scientists and
other scientists replaces with the relationship between the elite
scientists and other scientists. Thus, the null model produces
a greater effect than the original model.

To further verify the significance of the influence of citation
or cooperation, we use the Z -test to compare the differences
in the interaction influence αmn between the null model and
the original ones. Specifically, denote by Zo the original
interaction influence α and by Z p the value after permutation,
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Fig. 8. Results of permutation tests in (a)–(d) citation pattern (denoted by orange solid and dotted lines) and (e)–(h) cooperation pattern (denoted by blue
solid and dotted lines).

Fig. 9. Evolution of individual influence (µ) of the citation pattern in
STEM (orange line) and Humanities (blue line). (a) Individual influence of
elite scientists. (b) Individual influence of ordinary scientists.

where σ is the standard deviation among them. Then, the Z -
score is calculated by

Zscore =
Zo − Z p

σ
. (7)

The results show that all the p-values are smaller than 0.01,
indicating that the influence caused by citing or cooperative
activities is a significant phenomenon in the academic fields,
which confirms that interaction among scientists is essential
to developing scientists’ influences.

Fig. 10. Evolution of interaction influence (α) of the citation pattern in
STEM (orange line) and Humanities (blue line). (a) Elite on elite scientists.
(b) Elite on ordinary scientists. (c) Ordinary on elite scientists. (d) Ordinary
on ordinary scientists.

V. COMPARISON IN DISCIPLINES

Since citation and collaboration habits are field-dependent,
many features exhibit different characteristics in different
disciplines, e.g., Sleeping Beauty features [79], Novelty fea-
tures [80], and Coauthor Rate [81]. Here, we further investigate
the citation and cooperation patterns in the two largest dis-
ciplines, i.e., STEM and Humanities. For simplicity, each
major discipline contains ten subdisciplines with the highest
number of publications. It should be noted that it is difficult
to ensure a similar quantity of papers for all subdisciplines.
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TABLE II
DISCIPLINES’ CHARACTERISTICS

Fig. 11. Evolution of individual influence (µ) of the cooperation pattern in
STEM (orange line) and Humanities (blue line). (a) Individual influence of
elite scientists. (b) Individual influence of ordinary scientists.

Our treatment only picked the most popular fields, which
may approximately represent the current development trends
in STEM and Humanities. Their characteristics are shown in
Table II.

A. Comparison by Disciplines in the Citation Pattern

We first investigate the differences between disciplines in
the citation pattern. Figs. 9 and 10 show plots of the evolution
of scientists’ individual and interaction influences in STEM
and Humanities over time in the citation pattern, respectively.
As can be seen from Figs. 9 and 10, the general trends of
individual influence (µ) and interaction influence (α) are sim-
ilar across all the disciplines, in both STEM and Humanities.
However, a larger value of the individual influence in STEM
than Humanities still indicates slight differences in the ability
of scientists from different disciplines to attract publications.
Furthermore, as can be seen from Fig. 10, the impact of
citing activities on scientists has significant difference between
STEM and Humanities, i.e., the interaction influence of STEM
grows faster than Humanities.

B. Comparison by Disciplines in the Cooperation Pattern

To understand the impact of collaborative activities across
different disciplines, we now investigate the differences
between disciplines in the cooperation pattern. Figs. 11 and 12

Fig. 12. Evolution of interaction influence (α) of the cooperation pattern in
STEM (orange line) and Humanities (blue line). (a) Elite on elite scientists.
(b) Elite on ordinary scientists. (c) Ordinary on elite scientists. (d) Ordinary
on ordinary scientists.

show plot of the evolution of scientists’ individual and inter-
action influences in STEM and Humanities over time in the
cooperation pattern, respectively. The general trends of indi-
vidual influence and interaction influence are similar across all
the disciplines, in both STEM and Humanities, which further
implies the importance of cooperation. However, compared
with ordinary scientists, the individual influence of elite scien-
tists in STEM is significantly stronger than that in Humanities,
underlining the different abilities of elite scientists from differ-
ent disciplines to attract publications (Fig. 11). Furthermore,
comparing Figs. 11 and 12, interaction influence is signifi-
cantly stronger than individual influence, implying a higher
impact of cooperation in STEM or Humanities. Moreover,
the interaction influence between elite scientists in different
disciplines gradually converges after 2012 [Fig. 12(a)], while
the interaction influence between elite scientists and ordinary
scientists gradually diverges after 2009 [Fig. 12(b)], suggesting
that the cooperation patterns of elite–elite scientists are similar
in different disciplines, but there are still large differences in
ordinary–elite scientists’ collaboration. The cooperation habits
in different disciplines may be the cause of this phenomenon,
i.e., the significant differences in cooperation rates for different
disciplines [82] and the smaller team sizes in Humanities [8].
In addition, the interaction influence coming from ordinary
scientists’ cooperation is still at a low level [Fig. 12(c) and
(d)]. Comparing with elite scientists [Fig. 12(a) and (b)], the
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influence of ordinary scientists is weak, for both STEM and
Humanities.

VI. CONCLUSION AND DISCUSSION

To summarize, our present work investigates the influence
of scientists in different patterns using the multivariate Hawkes
process. Specifically, by dividing the scientist’s influence
into individual and interaction influences, we quantify the
scientist’s influence in the citation and cooperation patterns,
respectively. Our results show that elite scientists have a
greater impact than ordinary scientists in both the patterns,
demonstrating the significant effect brought about by the aca-
demic interactions of elite scientists. Our results also validate
the recent studies about top scientists, e.g., the competitive
advantages of cooperating with top scientists [34] and the
powerful Matthew effect of the top scientists [23]. Moreover,
our permutation tests show the significance of the excita-
tion effects, highlighting that the interaction activities among
scientists (i.e., citation and cooperation) play an important
role in academic fields. Furthermore, our comparisons in
STEM and Humanities show that elite scientists’ individual
and interaction influences are more significant than ordinary
scientists in all the disciplines and patterns. Besides, the
opposite trends of interaction influence evolution of STEM and
Humanities in elite–elite and ordinary–elite scientists’ coop-
eration suggest that the latent cooperation habits for different
disciplines are different, e.g., cooperation rates or team size.
Generally speaking, our work provides a feasible view for the
development of academic fields, showing the main sources of
scientists’ influences in different patterns and revealing the
main differences across scientists and disciplines. Our results
also uncover the weak causal relationship between excitation
effects in academic fields and their temporal evolution.

However, our work still has some limitations. First, our
work is based on the AMiner dataset and has yet to expand
or supplement other datasets, which means that the dataset’s
quality may lead to our conclusion containing some bias. For
example, the AMiner dataset focuses on STEM papers and
includes some papers in Humanities, which is unfair when
discussing the differences between STEM and Humanities.
However, none of the existing large-scale datasets focuses
on Humanities, whether AMiner or MAG. Furthermore, the
AMiner dataset only labels the lowest level of fields, which
may also be too fine-grained, and the underlying technol-
ogy of the delineation of the fields (i.e., clustering method
for big data) is controversial in terms of its accuracy and
reliability [83]. Second, we extend the method developed
in [20] to avoid enlarging the contribution in the fewer
publications’ fields. Through this method, although the impact
of low average citations is eliminated, the contributions of
all the papers are normalized to a lower level. In future
work, we will consider a more reasonable method of field
normalization to calculate the contributions of papers in var-
ious fields. Third, considering disciplinary differences, fewer
papers are published in Humanities than in STEM, leading
to relatively less research in Humanities. Thus, our future
work will adopt more appropriate classification methods or
more suitable datasets for comparing fields, especially STEM

and Humanities. Finally, evaluating author contributions is a
challenging task, which is also a problem encountered by
the existing scientific credit system [84], [85], [86]. However,
scientific works are the result of the joint efforts of all the
collaborators, and this work only considers the contribution
of the paper to the first author, which potentially inflates the
contribution of the first author and ignores the efforts of other
collaborators. Thus, our future work will try to find a more
equitable method for allocating contributions to reveal better
the potential influence of the citation and cooperation between
scientists. Hopefully, our findings could be further expanded
to uncover scientists’ interaction influences in other patterns
of the academic fields, e.g., the interdisciplinarity pattern and
the differences in interaction influences among scientists in
different career stages.
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