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Abstract— Location-Based Social Networks have been widely
studied in recent years; new approaches constantly developed to
solve individuals’ trajectory prediction tasks. However, most of
these methods require sufficient data to learn individual features,
which is not always satisfied in real situations, especially for
online data. The digital data on human behavior typically follows
a power-law distribution, indicating that only a few people have
rich activities recorded while most people’s behavioral data are
limited. In order to overcome this hurdle, our work constructs
the user behavior proximity network (UBPN) and proposes a new
walking strategy based on this network that extracts the hidden
information from the social contacts to substitute the unobserved
behavioral information of an individual. Specifically, our pro-
posed walking strategy has two walking paths, accounting for
the temporal and social information on the ego users’ and their
alters’ mobility activities. This walking strategy is model-agnostic
and can be integrated with many existing walk-based deep learn-
ing methods. Our work applies the methods on two real-world
datasets with rich spatiotemporal information and shows that
the performances of the existing prediction methods improve
significantly by integrating the proposed walking strategy.

Index Terms— Mobility prediction, network science, social
activity, user behavior proximity network (UBPN), walking
strategy.

I. INTRODUCTION

THE world is connected by integrated social systems,
and social networks are now denser than ever. For

example, the “small-world” network [1] suggests the average
distance between two real-world members is around six,
while this distance is further reduced to around five in the
online social network [2]. Driven by the internet and social
media, new phenomena emerge (e.g., online and offline inter-
action) and generate great interest in social network analy-
sis. The location-based social network (LBSN) is amongst
these systems, which integrates social relationships and
human mobility. Therefore, it plays an important role between
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the impact of social relationships and mobility on each other.
Meanwhile, the ongoing process of the LBSN applications,
such as Yelp, Gowalla, Foursquare, turns many aspects of our
lives into digital data, including geographic locations, friend
relationships, time stamps, interests, and hobbies. These data
are being collected and become the main data source for study-
ing human dynamics. Furthermore, the various socio-spatial
properties of LBSN imply that the social network has a
subtle influence on human mobility activities, thus promote the
development of two topics, i.e., friendship and human mobil-
ity prediction [3]–[9]. These tasks can help the government
better design the urban region, controlling the diseases and
optimizing transportation strategies [3], [10]–[12], and also
provide potential applications in the e-commerce platforms,
for instance, discovering the potential interests of users and
gaining economic impacts [13]–[16].

Human mobility prediction has attracted lots of attention
from urban planning to dining recommendation [17]–[20]. The
traditional models are mainly referred to as recommendation
systems or sequential models, such as matrix factorization
(MF) [4], [21] and Markov chain (MC) [22], [23]. The
MF model decomposes the user location matrix to learn
the general features of the crowd. The MC method models
human behavior by learning the location transfer matrix. Later,
Rendle et al. [24] proposed the model of factorizing per-
sonalized Markov chains (FPMCs) to combine the matrix
decomposition model with the Markov chain model and use it
for the next basket of recommendations. However, these meth-
ods ignore the spatiotemporal factors of human mobility. For
example, the mobility patterns for one day and one month may
differ substantially. In addition, one person’s short-distance
trajectory may be affected by his (her) work location, and
a long-distance trajectory may be affected by the vacation
location. Therefore, Cheng et al. [25] extended FPMC by
embedding movement constraints and personalized Markov
chains. Feng et al. [26] proposed a personalized ranking
metric embedding method (PRME), which embeds geographic
features based on the modeling of personalized check-in
sequences. Xie et al. [27] captured the contextual preferences
and dynamic interests by embedding the information in the
movement sequence into the low-dimensional latent space.
A recurrent neural network (RNN) is a powerful tool to capture
the sequential features and achieve better performance in word
embedding [28] and the sequential click prediction tasks [29].
These characteristics naturally introduce the RNN methods
and their extensions to the prediction tasks. Spatial-
temporal recurrent neural networks (ST-RNNs) proposed by
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Liu et al. [30] predicts the next POI by modeling the spa-
tiotemporal context. The model trains individual data into
several segments based on a time window, allowing it to
learn short-term interests. Leng et al. [12] integrate RNN
into a recommendation system to predicts next locations
using cell phone traces. Li et al. [31] proposed temporal and
multi-level context attention (TMCA) using the LSTM-based
framework to predict the next POI. The contextual atten-
tion recurrent architecture (CARA) model proposed by
Manotumruksa et al. [32] uses the spatiotemporal context
of check-ins information to capture the human dynamic
preferences through a gating mechanism. In general, most
RNN/LSTM based methods can model short-term preferences,
but they are not as effective for long-term preferences. How-
ever, if the data are sparse, the inter-event time between two
consecutive activities experiences a long gap, and the model
based on long-term preference will perform better. Therefore,
DEEPMOVE [33] uses multi-modal RNN to capture multiple
factors when humans are moving, and two attention mecha-
nisms are integrated to learn long-period features. The spatio-
temporal gated network (STGN) [34] improved the ST-RNN
model and introduced a gating mechanism to enhance long-
and short-term memory.

Although these methods have achieved encouraging results,
social information, including social relationship (e.g., friends)
and their online social activities (e.g., post, share, and like)
are still be ignored in the literature. Recent research finds that
human behaviors are closely related to their social relation-
ship [5], [6], [35]. For example, people are more likely to
travel to places where their friends have visited [36], [37], even
the running exercises are affected by social networks [38].
Moreover, Cho et al. [5] found that in LBSN, social relations
can explain about 10% to 30% of human movements and
Gao et al. [8] found that the human mobility behavior is
determined by the social network and historical behavior
of the individual. Furthermore, there are two reasons that
integrating social information is effective. The first reason is
that although the enormous mobility data can be collected,
it suffers from data sparsity issue due to the high cost
of data collection and privacy concerns. Unlike the traffic
datasets, the mobility data collected from LBSN apps are
sparse and heterogeneous. For example, in the Yelp dataset,
most users visit restaurants with a few number of reviews [19],
making the models difficult to capture effective features and
leading to poor performance. Second, there is an upper limit
for user behavior prediction [39]. Without introducing new
information, the model cannot exceed the prediction limit.
Thus, introducing additional easy-collected information, such
as social information, become a possible solution. Based on
this, recent studies introduce social information to improve
the performance of the models. For example, Yang et al.
[40] designed a method for embedding user mobility and
social relations simultaneously and mapping user movement
behavior to a low-dimensional space based on traditional
embedding. Lian et al. [41] proposed a model called collab-
orative exploration and periodically returning (CEPR), which
learns the characteristics of users’ social networks and geo-
graphic factors and predicts the probability of people exploring

new locations. Luceri et al. [42] proposed a framework named
social influence deep learning (SIDL), which combines deep
learning and network science to model social influences from
the local, community, and global perspectives to predict human
dynamics. Although these models have achieved good results
after introducing social information, to our knowledge there
are few models that utilize social information are used for
user location prediction.

Compared to the mobility data, the social information
collected from the internet is relatively dense [9], [43], which
is proven to improve the model’s performance. However,
on the one side, dense data may contain lots of irrelevant
information. On the other side, using online social information
to supplement sparse location information effectively has
become a key direction. Recently, Bagrow and Mitchell [44]
found that in the online social platform, e.g., Twitter, part of
individual information is stored in the online social networks
and utilizing a few friends’ online information, e.g., 8 and
9 of an individual’s contacts, the prediction accuracy can reach
the same level as that of the individual alone. Being inspired
by this work and considering that human mobility is also
one type of sequence data, our study integrates the social
information and proposes a new walking strategy. Specifically,
by constructing a user behavior proximity network (UBPN)
and considering the time and space proximity constraint, our
walking strategy can filter the noise information and dig out
the hidden information in the social networks. In more detail,
the main contributions of our work are as follows.

1) First, this study shows that social information provides a
substitute for missing information of individuals in two
real datasets.

2) Second, the UBPN is constructed, and based on this
network, a model-agnostic new walking strategy is
proposed. This walking strategy does not change the
structure of the existing prediction model and can be
integrated with many existing walk-based deep learning
methods.

3) Finally, our walking strategy is integrated into six
baseline methods. The experimental results show that
our method outperforms the other baseline methods.
Furthermore, our method also compares with other
social information involved models and the results also
validated the effectiveness of our method in extracting
social information.

The rest of the article is organized as follows. In Section II,
introduces the dataset. Section III presents the theoretical
analysis. In Section IV introduces the method. The experi-
ments and results are shown in Section V. Finally, Section VI
concludes with some discussions.

II. DATASETS

The present study uses two publicly available datasets,
i.e., Gowalla data1 and Yelp (Las Vegas) data.2 Gowalla
is a location-based social network, this dataset contains
global-scale check-ins and social networks from

1http://snap.stanford.edu/data/loc-gowalla.html
2https://www.yelp.com/dataset/challenge
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TABLE I

DESCRIPTIVE STATISTICS OF OUR DATASETS

Fig. 1. Statistical distribution of (a) Gowalla check-ins; (b) Gowalla friends;
(c) Yelp (Las Vegas) restaurant reviews; and (d) Yelp (Las Vegas) friends.
The blue dots mean most active users, i.e., the users who have more than ten
friends and submit at least thirty check-ins (reviews).

February 2009 to October 2010. Yelp is a popular
crowd-sourced business reviewing website. This dataset
contains the restaurant and user information. The restaurant
information includes the latitude and longitude, city name,
the overall score, etc. The user information contains the
comment, comment time, and social relationship. For
comparability, our work study two years of data (i.e., from
January 2016 to January 2018) and the city with the largest
amount of data (i.e., Las Vegas) in the Yelp dataset. The
overview of these two datasets is presented in Table I. The
user distribution of the Gowalla and Yelp (Las Vegas) dataset
is shown in Fig. 1. Fig. 1(a) and (b) shows the Gowalla
datasets statistical distribution, and Fig. 1(c) and (d) shows
the statistical distribution of the Yelp (Las Vegas) dataset.
It can be seen that both datasets are subject to a power-law
distribution, which means that most people have less than
30 historical activities and less than ten friends.

These geotagged data with temporal information allow
us to quantitatively examine human mobility patterns at
a city-scale automatically. However, the Gowalla check-in
data lacks information about the cities. To solve this,
our study extracts information about the city through the
Geocoder API.3 Furthermore, although the Yelp data contains
check-in data, the total amount is not sufficient. Therefore, our
work uses the review data to replace check-in data and extract
geographic information from the restaurant data. Considering
that the users rarely transfer between cities, this study only
focuses on the largest city in the dataset, i.e., Las Vegas.
And to get statistically meaningful results, our study focuses
on the most active users in two datasets. More specifically,
the users who have more than ten friends and submit at least

3https://geocoder.readthedocs.io/providers/ArcGIS.html

thirty check-ins (reviews) are selected. Finally, there are a
total of 3 30 487 check-ins from 2299 users on 19 520 POIs
in Gowalla data and 7031 reviews from 1592 users on
62 976 restaurants in Yelp (Las Vegas) data.

III. THEORETICAL ANALYSIS

Although data collection from online social platforms is
convenient, the available data for most individuals is insuf-
ficient [45], [46]. For instance, as shown in Fig. 1, most indi-
viduals only have 1∼2 check-ins (reviews) and friends. Thus,
the resulting latent representations lead to poor performance
of traditional machine learning methods to predict individuals’
trajectory [33], [47]. One way to mitigate this problem is to
utilize social network information. It has been demonstrated
that social network information can help the relevant model
to obtain a substantial performance improvement [40]–[42].
Thus in this section, the focus is on the feasibility of utilizing
social information and the effect of data proximity from an
information entropy perspective.

The amount of information can be represented by the
information entropy, which is usually used in the natural
language process, e.g., measuring the information contained
in the text [48], [49]. Similar to the text, human mobility
patterns are also in the form of sequences; therefore, this
study uses the information entropy [49] to estimate the latent
trajectory which hides in the friend’s mobility data. Defining
human mobility entropy as ĥ, which implies the amount of
the information needed to predict the next location, then the
ĥ can be calculated as follows:

ĥ = L log2 L∑L
i=1 mi

(1)

where L represents the length of the location sequence of
the individual. mi represents the matching length of the
individual i ’s location, which represents the shortest length
of a series of subsequent mobility behaviors that never appear
in the historical data starting from the i -th location.

When considering the social relations, it can easily expand
the mobility entropy to cross mobility entropy, which takes
the users (the ego) and their contacts (the alter contacts) into
consideration. Specifically, the calculation for cross mobility
entropy is as follows:

ĥ×(A|B) = L A log2 L B∑L A
i=1 mi(A|B)

. (2)

Denoting A as the ego user and B as the alter contact, where
mi(A|B) means starting at the i location, the shortest matching
length of subsequent mobility behaviors for ego user A that
never appeared in alter contact B’s historical mobility data.
Here, the historical mobility data represents all mobility behav-
iors of the alter contact B occurring earlier than location i
of ego user A. L A and L B represent the mobility behavior
sequence length of user A and B, respectively. Compared
with the mobility entropy, the cross mobility entropy replaces
the L with L B in log term of molecular because the cross
mobility entropy depends on the historical mobility data of
alter contact B. When the ego user has more than one alter
contact, the information provided by the alter contacts can
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Fig. 2. Mobility entropy as functions of the number of alter contacts on
Gowalla dataset. The green line represents ego user mobility entropy and the
purple line represents a single alter contact’s cross mobility entropy. The blue
line represents cumulative cross mobility entropy of alter contacts and the
orange line represents cumulative cross mobility entropy of both ego user
and alter contacts.

be calculated by cumulative cross mobility entropy, which
represents the average amount of information needed in the
friends’ mobility data

ĥ×(A|B) = L A log2 L AB∑L A
i=1 max{mi(A|B), B ∈ B} (3)

where B is the social contacts of ego user A,
max{mi (A|B), B ∈ B} corresponds to the longest match
length over any of the sequences of the alter contacts in B.
L AB = ∑

B∈B wB L B/
∑

B∈B wB is the average weighted
mobility behavior sequence length, where the weight wB

means the number of match time for the alter contact B. Thus,
the information contained in the alter contacts is helpful for
the ego users, which can be calculated by the cross mobility
entropy or the cumulative cross mobility entropy.

Fig. 2 shows the experimental results of mobility entropies
on the Gowalla dataset, including user mobility entropy, cross
mobility entropy, and cumulative cross mobility entropy. The
lower value of the entropy implies high predictability for
users. From Fig. 2, it can be seen that the mobility entropy
of the ego user (green line) is about 3.85, which is lower
than cross mobility entropy (purple line) of the alter contact
(≈ 5.90). Thus, the ego information contained in one alter
contact is limit. It should be noted that although a single
alter contact contains less information about the ego user,
when the number of alter contacts increases, the informa-
tion about the ego user also increases, as shown in Fig. 2
(blue line). When the number of alter contacts is more than 4,
the cumulative cross mobility entropy is lower than ego user’s
mobility entropy, which implies as long as there are enough
alter contacts, the ego user information can be speculated
from alter contacts. Furthermore, the value of the cumulative
cross mobility entropy can further decrease after adding more
alter contacts, thus implies the alter contacts may contain
the missing information of the ego users and suggests that
the information of alter contacts can be utilized to predict
individual trajectory. Notably, Wang et al. [50] pointed out
that human attention is limited; in other words, people will
only pay attention to a limited number of friends. And as
the amount of alter contacts’ information increases, the noise

Fig. 3. Variation of mobility entropy as functions of removing the activities
for recent �T days. The largest part of the variation of mobility entropy
occurred in the first three days (shaded red region), with a change of
nearly 2.1%.

information irrelevant to the ego users will also be introduced.
Therefore, to tackle this problem, it should choose the right
number of alter contacts to balance the amount of extra
information and the performance of the model. Moreover,
the results also show that the mobility entropy can further
decrease (orange line) when considering both ego and alter
information.

The recent mobility patterns will infer the individual’s future
mobility trajectory [5], [49]. To estimate the recent effects,
the variation of mobility entropy on the Gowalla dataset is
plotted in Fig. 3. As shown in Fig. 3, after removing the
most activities of recent �T days, all the entropies increase
gradually and the most important ascending area is in the first
three days (shaded red region, with a change of nearly 2.1%).
This finding suggests that the time window of individual
activities can be chosen as one to three days. Additionally,
the increase in cross mobility entropy (blue line) also implies
that ego’s mobility behavior refers to alter contacts behavior.

IV. METHODOLOGY

Most of the existing position prediction models utilize
single-source information only and ignoring the social infor-
mation that may contain lots of hidden information of ego
users. In this section, the hidden information is extracted
and integrated into the ego user’s mobility pattern to help
improve the prediction model’s performance. To achieve this,
the UBPN is constructed and the hidden information of ego
users is sampled on this network through the random walk.

A. User Behavior Proximity Network

The LBSN contains both the activity data and the social
relationship of ego users. However, this network ignores the
mutual influence among friends. As mentioned in Section II,
these recent mobility activities of alter contacts have a signifi-
cant impact on ego users. Thus, to improve the current LBSN,
the UBPN is constructed by introducing the temporal social
inference into user behavior activity. A simple illustration
is shown in Fig. 4(a), in this network, the node represents
the mobility activity of the ego or the alter contact, which
is represented as the food icon, and the link represents the
impact between the activities. Where the solid arrow means

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on May 30,2022 at 02:48:05 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: NOVEL SPATIOTEMPORAL BEHAVIOR-ENABLED RANDOM WALK STRATEGY ON ONLINE SOCIAL PLATFORMS 811

Fig. 4. Simple illustration of UBPN in (a) mobility activity space and (b) real space. Where the food icons represent mobility activities of individuals,
the yellow and purple solid arrow represent direct influence by the individual (the ego or alter contact) self and the red dashed arrow represents indirect
influence by individual’s alter contacts.

direct influence by the individual self (historical activities)
and the dashed arrow represents the indirect influence by
the individual’s alter contacts. Additionally, Fig. 4(b) is the
same network in real space. In this study, the temporal social
inference mainly focuses on user proximity, including both ego
and alter contacts. More specifically, the ego user proximity
implies that the ego users are more likely to travel to the
locations that were recently visited in the mobility sequences.
This impact is marked as the solid line (yellow and purple)
in Fig. 4. Similarly, the ego users may be affected by alter
contacts, which is marked as the red dotted line in the figure.
These recency features are closer to reality, for example,
the ego users may often visit their favorite restaurants or accept
a friend’s suggestion to visit another restaurant in a limited
time window. Therefore, the alter proximity should follow the
following conditions:

δ =
{

1, Tego − Talter < �T & Cego = Calter

0, else
(4)

where Tego, Talter represent the visited time of ego and
alter contacts respectively and �T means time window.
Cego, Calter represent the visited area of ego and alter contacts,
respectively. The reason for using the visited areas instead
of the specific visited locations because those locations close
to each other exhibit similar characteristics [25] and induce
similar foraging costs on users [19], i.e., restaurants around the
commercial district. Here, the visited locations are clustered
to areas by density-based spatial clustering of applications
with noise (DBSCAN), which can effectively find clusters of
arbitrary shapes and do not need the number of clusters [19],
[51], [52]. There are two parameters for DBSCAN, i.e., neigh-
borhood density threshold MinPts and the clustering radius
ε. After specifying each location must belong to a single
cluster, the neighborhood density threshold MinPts = 1. And
by adopting the method in [53], the clustering radius ε for city
size can be automatically determined. As an example, Fig. 5
shows the clustering of the restaurants in Las Vegas city by
using DBSCAN, in which different colors represent different
areas.

B. Random Walk Strategy

To extract the hidden information from the alter contacts,
a random walk strategy is designed based on UBPN. A more

Fig. 5. Clustering of the restaurants in Las Vegas city by using DBSCAN.

detailed illustration is shown in Fig. 6. Our walking strategy
has two walking paths, the main walking path sample the data
of the ego users, and the auxiliary walking path sample the data
of the alter contacts. Where the blue solid arrow represents
the walking direction. It can be seen that, in our model,
the walking direction is in the reverse order of time series.
Formally, choosing an ego user, the shaded yellow region is the
data that needs to be supplemented. Assume that the random
walk starts from the mobility activity M1, if the in-degree of
activity M1 is greater than 1 (k in

i > 1), which implies the ego
user is affected by alter contacts, then the walking strategy
has a chance to go through the auxiliary walking path which
is based on the data of the alter contacts. Otherwise, it will
sample the ego user’s history data only, i.e., the main walking
path. The auxiliary walking path supplements the missing data
of the ego users. The start activity of the auxiliary walking
path will be chosen by the most recent activity of the alter
contact (e.g., M2) in the relative time window (the shaded
green region). And the roaming depth of the auxiliary walking
path is defined by dp = k, which is used to limit the sampling
depth of the alter contacts. To merge the auxiliary walking
path to the main walking path, the return activity (e.g., M3)
must occur before the end activity of the auxiliary walking
path. Hence, in our example, the return activity node is M4.
Specifically, the transition probability can be written as

Pro =
{

1, k in
i = 1

δ ∗ [α ∗ T + β ∗ �max + (1 − α − β) ∗ D], k in
i > 1

(5)
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Fig. 6. Illustration demonstrating the proposed walking strategy on the UBPN. The blue solid arrow indicates the direction of walking.

where T = (1 − 0.56 ∗ �T 0.06) represents the time effect
between two activities, which is based on Ebbinghaus’s for-
getting curve [54]. It is intuitive to see that the longer the
time interval between two activities, the lower the transition
probability. �max represents the highest prediction limit based
on historical data of the individuals [39], alternatively, how
much useful information is hidden in the alter contacts. The
�max can be calculated as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
� ≤ �max(ĥ×, L)

ĥ× = H (�max) + (1 − �max) log2 L − 1

H (�max) = −�max log2(�
max)

− (1 − �max) log2(1 − �max)

(6)

where H (�max) is the binary entropy function. The high
value of �max implies that lots of ego user’s information
is hidden in alter user’s mobility patterns, resulting in a
higher transfer probability between the activities of ego and
alter contacts. Thus, �max provides an easy-to-explain way to
find out which friends provide more information according
to prediction limits. The distance parameter is denoted as
D = e−�dist in (5), and the �dist means euclidean distance
between two adjacent activities related locations. α, β are
the hyperparameters that adjust the time and social effect.
It should be noted that, for different ego users, there may have
large variations in the number of alter contacts, from a few to
a hundred. However, human attention is limited, people will
only focus on those friends their care about most [50]. For this
reason, the alter contacts we chose for ego users is defined as
N ′

f = min[N f , SN ], where N f is the actual number of friends
of the ego users and SN is the sample number which is fixed
as five in our experiments.

The advantage of this walking strategy is that the strategy
not only samples the direct mobility activities of ego users
but also samples the indirect mobility activities of alter con-
tacts, i.e., the activities that may have large impacts on ego
user’s current activities. And these impacts are constrained by
time and space factors. Furthermore, by adopting this strat-
egy, the noise contained in the information and computation
cost is reduced, which creates a tradeoff between balancing

computational efficiency and prediction performance. Com-
pared to the traditional prediction methods which only con-
sidering the ego user’s information but ignoring the social
impacts. Our walking strategy makes up for this shortcoming
and extracts the hidden information of the ego users by
considering the temporal and social impact.

V. EXPERIMENTS AND RESULTS

Our method is performed in the two datasets mentioned
in Section II, i.e., Gowalla and Yelp (Las Vegas). For the
experiments, 80% of historical user mobility data is used for
training, and the remaining 20% for testing.

A. Baselines

To validate the effectiveness of our method, the proposed
walking strategy is integrated into six prediction methods
for comparison, i.e., FPMC [24], PRME [26], RNN [29],
GRU [55], LSTM [56] and DEEPMOVE [33]. These methods
are widely used for behavior prediction and briefly introduced
as follows.

1) FPMC [24]: This is a classical sequence prediction
method based on the Markov chain.

2) PRME [26]: This method takes into account the spatial
distance interval of neighboring behaviors when learning
embeddings.

3) RNN [29]: This is an efficient method of temporal
prediction widely used for word embedding and ad click
prediction.

4) GRU [55]: This is a variation of the RNN model
equipped with two gates to control the flow of infor-
mation.

5) LSTM [56]: This is another variation of the RNN model,
which has shown a strong ability to handle sequential
data and learn to remember features over time.

6) DEEPMOVE [33]: This method uses the attention mech-
anism to learn the user’s long-term preference from the
user’s behavioral history and then uses RNN to learn the
user’s short-term preference.
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TABLE II

OVERALL PERFORMANCE ON GOWALLA DATASET OF DIFFERENT MODEL IN TERMS OF ACC, RECALL AND F1

TABLE III

OVERALL PERFORMANCE ON YELP (LAS VEGAS) DATASET OF DIFFERENT MODEL IN TERMS OF ACC, RECALL AND F1

B. Evaluation Metrics

In this work, three common evaluation metrics are
used to evaluate our method and baseline methods: mean
accuracy@N, mean recall@N, and mean F1-score@N. These
indicators are widely used to evaluate prediction results [27],
[57]–[59]. Let R denote the activities in the test set.

1) Mean Accuracy@N: Mean accuracy@N is defined as the
proportion of the number of correct predicted locations
in the test set, that is

Accuracy@N =
∑

r∈R isCorrect(r, Top@N)

|R| (7)

where is Correct(r, Top@N) returns 1 if the location r
of the user visited is included in the top N prediction
list, otherwise returns 0.

2) Mean Recall@N: For all the behavioral data R and all
users U in the test set, let Ri represents the behavior
sequence of user i , then the mean recall@N can be
calculated as

Recall@N= 1

|U |
∑

Ui ∈U

∑
r∈Ri

isCorrect(r, Top@N)

|Ri | . (8)

3) Mean F1@N: Similarly, the mean precision@N can
be calculated as (9), then the mean F1@N can be
calculated as (10)

Precision@N = 1

|U |
∑

Ui ∈U

∑
r∈Ri

isCorrect(r, Top@N)

|Ri | × N

(9)

F1@N = 2 × Precision@N × Recall@N

Precision@N + Recall@N
. (10)

The performance of our proposed walking strategy in
combination with six baselines on two datasets are shown

in Tables II and III, respectively, where N ∈ {1, 5, 10}.
The results show that all the performance of the predic-
tion models improved after integrated the proposed walking
strategy, especially for these deep learning-based methods,
e.g., RNN, GRU, LSTM, and DEEPMOVE. For example,
in the deep learning-based methods over the Yelp (Las Vegas)
dataset, all performance indicators have improved nearly nine
times, and on the Gowalla dataset can enhance performance
by about 22%. This can be explained by the primary role
of the proposed walking strategy, which is to encode the
general social interaction information in the mobility sequence
of users. Specifically, the stronger the model’s ability to
learn the sequence, the more obvious the effect of pre-
diction performance improvement. For example, compared
with the Markov-based model, the RNN-based model has
a stronger ability to learn the long-term features in the
sequence data, which leads to a better performance in results.
Furthermore, the quality of the dataset affects performance
improvement. For example, the density (check-ins/users) of the
Yelp (Las Vegas) dataset is 39.56, which is much sparser than
the Gowalla dataset (143.75). After integrating the proposed
walking strategy, the performance improvement on the Yelp
(Las Vegas) is significantly higher than that on the Gowalla
dataset. All performance indicators on the Yelp dataset are
nearly eighteen times better than those on the Gowalla dataset
since more missing data can be supplemented by our method
on sparse datasets.

C. Parameter Sensitivity

The proposed walking strategy involves a number of
parameters, so it is necessary to examine the parameter
sensitivity. Choosing the GRU model as the benchmark
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Fig. 7. Performance (Acc, Recall, and F1) comparison over the different walking parameters on the Gowalla dataset. (a) shows the performance as the time
window change, (b) shows the performance change of the number of friends, (c) shows the performance change of roaming depth on alter, and (d) and (e)
show the influence of the hyperparameters in (5) on performance.

model, Figs. 7 and 8 show the performance of the main
parameters in our walking strategy on Gowalla and Yelp
(Las Vegas) datasets, respectively, i.e., time window (�T ),
alter number (SN ), roaming depth (dp) and hyperparameters
(α, β). The sensitivity of different time windows is shown
in Figs. 7(a) and 8(a), respectively. It can be found that the
performance of the model increases first and then gradually
decreases, especially in Yelp (Las Vegas) dataset (the peak
value is about thirteen days). This implies the impact of
alter contacts on ego users will not happen immediately,
which needs to take some time to reach the optimum. It is
understandable, for example, if one friend posted a visited
location on the web, then it may take some time for the
ego user to see the post and be affected according to her
situation. The reason why the optimal time window of the
Yelp (Las Vegas) dataset (≈ 13 days) is longer than that of the
Gowalla dataset (≈ 3 days) may be caused by the attributes of
the dataset. The Gowalla dataset mainly consists of check-in
data, which have high real-time performance. Comparing to
the Gowalla dataset, the Yelp (Las Vegas) dataset consists
of review data, which leads to low real-time performance.
The performance decreases as the time window continues to
increase, which is mainly because a time window being too
long introduces a lot of noise. For example, the time window
equals one year in the extreme. The sensitivity of different
alter numbers is shown in Figs. 7(b) and 8(b), respectively.
It can be seen that the performance of the model improves as
the alter number increases, and then reaches saturation, thus

TABLE IV

COMPARISON OF DIFFERENT MODELS ON YELP (LAS VEGAS) DATASET

most because the attention of users is limited. The saturation
number of the Yelp (Las Vegas) dataset is larger than that
of the Gowalla dataset is also because the Yelp (Las Vegas)
dataset is more sparse and contains more missing data. The
results in Figs. 7(c) and 8(c) also imply that too deep roaming
depth introduces the noises of the alter contacts, which is not
useful for supplementing the ego user data. The sensitivity of
hyperparameters is shown in Fig. 7(d) and (e) (see Fig. 8),
it can be found that the performance of the model is not
affected by the hyperparameters. This is mostly because the
walking strategy has already been restricted to UBPN, so the
hyperparameters α and β can only play a fine-tuning role, and
cannot affect the model performance greatly.

D. Effectiveness in Extracting Social Information
To validate the effectiveness of our method in extracting

social information, our study compares our method with
the social information involved method (DGRec [60]) and
three traditional models which including latent social infor-
mation as follows.
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Fig. 8. Performance (Acc, Recall, and F1) comparison over the different walking parameters on the Yelp (Las Vegas) dataset. (a) shows the performance as
the time window change, (b) shows the performance change of the number of friends, (c) shows the performance change of roaming depth on alter, and (d)
and (e) show the influence of the hyperparameters in (5) on performance.

1) DGRec [60]: This is a model based on graph convolu-
tional networks and social information for session-based
recommendation in online communities.

2) FM [61]: This is a model combines the advantages
of support vector machines (SVMs) and factorization
models.

3) NFM [62]: This is a model that combines the linearity of
factorization machines (FMs) in modeling second-order
feature interactions and the non-linearity of neural net-
work in modeling higher-order feature interactions.

4) CKE [63]: This is a model that integrates collaborative
filtering and knowledge base.

The comparison results of these models and our method
on the Yelp (Las Vegas) dataset are shown in Table IV. The
results show that the prediction result of DGRec is better
than DEEPMOVE (no social information), which implies
that the social information do help models to improve the
prediction performance. However, the performance of DGRec
is less than other traditional latent social information involved
models, i.e., FM, NFM, and CKE, also implies that although
social information is helpful, it is challenging to apply social
information on the model. Furthermore, when our method is
applied to DEEPMOVE (ours), the prediction result is better
than all other methods, proving that the way our research uses
social information is more effective than other models. It also
should be noted that these comparison methods are deeply
integrated with social information, that is, it is impossible to

separate the social information utilization methods from the
models, while our method can be applied to most existing
models.

VI. CONCLUSION AND DISCUSSION

In conclusion, in order to compensate for the poor per-
formance caused by the sparsity and heterogeneity of online
user data, our work proposes a UBPN, which considering the
impact of spatiotemporal proximity. Correspondingly, a new
walking strategy is proposed to extract the hidden informa-
tion from the alter contacts to supplement ego user’s data.
The walking strategy takes into account temporal and social
impact, and can be directly integrated into the existing predic-
tion models. Experimental results on Yelp (Las Vegas) and
Gowalla dataset show that our method can perform better
than the baseline methods. Moreover, our work also studies
the sensitivity of the parameters and finds that there exists
an optimal value in the time window (�T ) and roaming
depth (dp), and a saturation value in the number of alter
contacts Sn . It should be noted that the present UBPN is
constructed based on correlation, not causality. Thus we may
replace correlation with causality in future work.

The present study highlights that the proposed walking strat-
egy can effectively extract the alter contact’s hidden informa-
tion, thus being used as a substitute for missing information of
the ego user and improving the performance of the prediction
model. Our results also highlight that personal information is
strongly embedded in the social network. Furthermore, our
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work may help the relevant departments predict the patient’s
movement trajectory during an epidemic and also may sup-
port the entertainment website (e.g., Yelp) managers in their
ambition to promote the recommendation system.
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